Connector assembly with light source sub-assemblies and...

Electrical connectors – With indicating or identifying provision – Connection indicating provision

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S676000

Reexamination Certificate

active

06773298

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to miniature electronic elements and particularly to an improved design and method of manufacturing for a single- or multi-port connector assembly having visual status indication capabilities.
2. Description of Related Technology
Modular connectors, such as for example those of the “RJ” configuration, are well known in the electronics industry. Such connectors are adapted to receive one or more modular plugs of varying type (e.g., RJ-45 or RJ-11), and communicate signals between the terminals of the modular plug and the parent device with which the connector is associated. Commonly, some form of signal conditioning (e.g., filtering, voltage transformation, or the like) is performed by the connector on the signals passing through it. Additionally, such connectors often include visual indicators for providing the user/operator with a visual representation of the electrical status of the connector. Such visual indicators may include, for example, light-emitting diodes (LEDs) which emit visible light at one or more wavelengths, such as one “green” LED and one “yellow” LED.
Many different considerations are involved with producing an effective and economically viable connector design. Such considerations include, for example: (i) volume and “footprint” available for the connector; (ii) the need for electrical status indicators (e.g., LEDs); (iii) the cost and complexity associated with assembling and manufacturing the device; (iv) the ability to accommodate various electrical components and signal conditioning configurations; (v) the electrical and noise performance of the device; (vi) the reliability of the device; (vii) the ability to modify the design to accommodate complementary technologies; (viii) compatibility with existing terminal and “pin out” standards and applications; (ix) ability to configure the connector as one of a plurality of ports, potentially having individually variant internal component configurations, and (ix) potentially the replacement of defective components. Additionally, in those designs requiring visual indicators, the presence of the indicators can has significant implications for the rest of the connector design. For example, certain types of visual indicator arrangements may preclude certain internal component configurations, adversely affect connector electrical performance due to radiated EMI, etc.
A variety of different approaches have heretofore been used to provide visual indication of electrical status within modular connectors. See for example, the approach disclosed in U.S. Pat. No. 4,978,317 to Pocrass (hereinafter “Pocrass”), wherein a plurality of LEDs are disposed within recesses formed in the front of the connector housing. The LED conductors in the Pocrass design are run backward through the connector and then downward to the substrate (i.e., PCB), along the top and back walls of the connector. This design suffers from several disabilities, including for example (i) the use of LEDs with comparatively long electrodes, thereby increasing the potential for radiated EMI from the LEDs which can reduce connector electrical performance; (ii) complex molding techniques to produce the needed passages for the LED electrodes; and (iii) the need for individualized insertion of each LED, thereby increasing labor cost. The approach of Pocrass also does not permit ready removal of the LEDs once inserted within the connector, since the electrodes must be deformed again after initial deformation to permit removal.
Additionally, the design of Pocrass is not well adapted to instances where the LED electrodes terminate to the substrate near the forward wall of the connector, since there is no convenient way of routing the electrodes from the LED to the substrate within the connector without taking a circuitous route or displacing other components.
Aside from Pocrass, other approaches to providing visual indicators have been used, such as mounting the LED directly to the substrate, and using either a light pipe or prismatic element to route the LED light to the front face of the connector. These approaches generally suffer from the disability of higher cost and complexity, since not only must the LED be placed and electrically bonded to the substrate, but a complementary light pipe or prism must be manufactured and disposed within the connector housing so as to cooperate with the LED. Such light pipe arrangements also tend to suffer from reduced luminosity as compared to “direct-view” light sources such as the forward-facing LEDs previously described. Additionally, as with Pocrass, individual treatment of each LED/light pipe/prism is again required, thereby increasing manufacturing cost.
Based on the foregoing, it would be most desirable to provide an improved apparatus for providing visual indication in an electrical connector (e.g., modular connector) and method of manufacturing the same. Such improved apparatus would ideally be cost and labor efficient to manufacture, reduce or mitigate radiated EMI as compared to prior art solutions, economize on space within and the footprint of the connector, and allow for the insertion of multiple light sources within the connector assembly at once, thereby reducing labor cost. Furthermore, such improved apparatus would be compatible with most any internal connector configuration, thereby providing the designer with the maximum degree of flexibility in choosing connector internals and indicator combinations.
SUMMARY OF THE INVENTION
The present invention satisfies the aforementioned needs by an improved apparatus and method for providing visual status indication in an electrical connector assembly.
In a first aspect of the invention, an improved light source sub-assembly for use in a connector assembly is disclosed. The light source sub-assembly generally comprises at least one light source (e.g., LED) and a carrier element adapted to physically receive and carry the light source(s). The light source further comprises a plurality of electrodes which are configured such that the light source is disposed in a desired orientation with respect to the connector housing. As such, the light source sub-assembly is inserted into a corresponding recess formed generally in the frontal area of the connector housing, and the light source is oriented within the connector assembly such that the light source can be viewed from the desired location (e.g., front face of the connector housing). The electrodes of the light source are routed directly downward to the substrate or external device to which the connector is mounted, thereby minimizing electrode run length (and EMI generated thereby). In one embodiment, the sub-assembly comprises a single carrier molded around the electrodes of a single LED, the LED and carrier being adapted for use as “end” indicators in a single-or multi-port connector assembly. In a second embodiment, the sub-assembly comprises a single carrier with two LEDs arranged in juxtaposed configuration and adapted for use in the interstitial regions between two adjacent ports in a multi-port connector. This dual-LED arrangement not only conserves space within the connector, but also permits insertion of two LEDs simultaneously, thereby simplifying manufacture.
In a second aspect of the invention, an improved connector assembly for use on, inter alia, a printed circuit board or other device is disclosed. In one exemplary embodiment, the assembly comprises a connector housing having one or more ports (i.e., modular plug recesses such as for receiving RJ-type plugs), a plurality of conductors disposed within the recess for contact with the terminals of the modular plug, and an electrical pathway between the conductors and a corresponding set of circuit board contacts. The improved connector assembly also includes at least one other recess for receiving a corresponding light source sub-assembly of the type described above. Each light source sub-assembly is constructed to substantially reduce electromagnetic coupling between

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Connector assembly with light source sub-assemblies and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Connector assembly with light source sub-assemblies and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Connector assembly with light source sub-assemblies and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3325810

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.