Connector assembly floating mount

Optical waveguides – With disengagable mechanical connector – Optical fiber to a nonfiber optical device connector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S056000, C385S076000, C439S079000, C439S248000, C439S564000

Reexamination Certificate

active

06592268

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to the art of connector assemblies and, particularly, to a system for mounting one or more connecting devices to a substrate with relative floating movement therebetween.
BACKGROUND OF THE INVENTION
Fiber optic connectors of a wide variety of designs have been employed to terminate optical fiber cables and to facilitate connection of the cables to other cables or other optical fiber transmission devices. A typical fiber optic connector includes a ferrule which mounts and centers an optical fiber or fibers within the connector. The ferrule may be fabricated of such material as ceramic. A ferrule holder or other housing component of the connector embraces the ferrule and may be fabricated of such material as molded plastic. A spring may be disposed within the housing or ferrule holder such that the ferrule is yieldably biased forwardly for engaging another fiber-mounting ferrule of a mating connecting device.
A pair of fiber optic connectors or a connector and another optical fiber transmission device often are mated in an adapter which centers the fibers to provide low insertion losses. The adapter couples the connectors together so that their encapsulated fibers connect end-to-end. The adapter may be an in-line component, or the adapter can be designed for mounting in an opening in a panel, backplane, circuit board or the like.
Various problems continue to be encountered in designing fiber optic connector assemblies or other connector assemblies, including applications involving backplanes, motherboards, daughterboards and the like. Such problems include properly and precisely placing a connector assembly on a substrate, such as a printed circuit board, accommodating misalignment of the connectors during mating, allowing relative floating movement between various components of the system and similar positional-type problems. Other problems simply involve efforts to simplify the design of connector assemblies. The present invention is directed to solving these problems and to providing various improvements in such connector assemblies, particularly in accommodating misalignment of the connectors during mating by providing relative floating movement of at least one of the connectors. Although the invention is shown herein embodied in a fiber optic connector assembly, the invention is equally applicable for use with other types of connector assemblies, such as electrical connector assemblies.
SUMMARY OF THE INVENTION
An object, therefore, of the invention is to provide a new and improved system for mounting a connecting device to a substrate with relative floating movement therebetween.
Another object of the invention is to provide a new and improved system for mounting a pair of connecting devices on a substrate one on top of another.
In one exemplary embodiment of the invention, the system includes a connector housing adapted for mounting on the substrate and including at least one elongated channel in the side of the housing. The channel extends generally perpendicular to the substrate and has an elongated restricted mouth opening at a side thereof. An elongated fastening post is snap-fit into the channel past the restricted mouth to a preload position. A fastener is engaged with the substrate and is operatively associated with the fastening post for tightening the post against the substrate.
As disclosed herein, a cross-dimension of the channel is larger than a cross-dimension of the fastening post so that the post can float relative to the housing. Therefore, when the post is tightened against the substrate, the connector housing is left with floating movement relative to the substrate in a direction generally parallel to the substrate. It also is contemplated that the fastening post be longer than the channel to provide for floating movement of the housing relative to the substrate in a direction generally perpendicular to the substrate.
The connector housing is adapted for mating with a complementary connecting device along an axis generally parallel to the substrate and perpendicular to the post-receiving channel. The larger cross-dimension of the channel is generally perpendicular to the mating axis whereby the housing floats in that direction. The cross-dimensions of the channel and the fastening posts are substantially equal in a direction generally parallel to the mating axis, whereby the housing is prevented from floating in that direction.
Other features of the invention include the fastening post having an internally threaded end near the substrate, and the fastener comprises an externally threaded bolt. The fastening post has enlarged heads at opposite ends thereof engageable with stop surfaces on the connector housing at opposite ends of the channel. The fastening bolt has a socket in an end thereof remote from the substrate for holding the post to facilitate tightening the post against the substrate.
In another embodiment of the invention, at least a pair of the connecting devices are stacked on the substrate one on top of another. Each connecting device includes the same connector housing. The elongated fastening post is long enough to snap into the channels in both housings. The post includes means for spacing the housings of the devices from each other.
In a third embodiment of the invention, a pair of the connecting devices again are stacked on the substrate one on top of another. The elongated fastening post comprises a first fastening post and is snap-fit into the channel in the connector housing of the bottom-most connecting device adjacent the substrate. A bridging bracket is secured to the substrate and extends over the bottom-most connecting device. A second elongated fastening post is secured to the bridging bracket and is snap-fit into a channel in the connector housing of a top-most connecting device above the bridging bracket.


REFERENCES:
patent: 5222168 (1993-06-01), Saito et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Connector assembly floating mount does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Connector assembly floating mount, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Connector assembly floating mount will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3042766

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.