Electrical connectors – Including or for use with tape cable – Including connector housing surrounding cable
Reexamination Certificate
1999-09-28
2001-08-14
Paumen, Gary (Department: 2833)
Electrical connectors
Including or for use with tape cable
Including connector housing surrounding cable
C439S620040
Reexamination Certificate
active
06273750
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to cable connectors and cable assemblies for interfacing electrical components with remote circuitry, both for power and data transmission. More particularly, the invention relates to a technique for facilitating fast and reliable component interfacing via flat cable connectors having insulation-piercing conductors, and cable assemblies based upon such cables and connectors pre-installed for plug-in component installation.
2. Description of the Related Art
A wide variety of applications exist for networked electrical components, particularly in the industrial environment. While networked components in computer and similar systems may transmit and receive power and data via conventional serial, parallel, ribbon and similar cables, industrial environments often imply more stringent demands. In view of the reliability and service environment in which they must function, industrial networks typically operate on particular industrial standards and respond to different demands in terms of power level, data transfer protocols, system robustness, and serviceability. Such considerations have led to a considerable array of network media and interface solutions specifically adapted to the industrial environment.
Early industrial network media relied upon individual conductors for transmitting data and power between networked components and circuitry. Developments in such media ultimately resulted in twisted pairs and twisted sets of conductors, sometimes shielded by an external layer, for transmission of data and power. Protocols specifically developed for such network media were adapted to provide for reliable data transfer between sensors, actuators, controllers, and the like.
A drawback of conventional multi-conductor media systems, particularly of shielded media systems, resulted from the need to individually terminate the conductors either directly at the system components or at plugs designed to interface with the components. Such termination results in exceedingly time-consuming installation and servicing operations, adding to the initial and overall cost of the media and the installed system. Solutions to the termination challenges include insulation-displacement technologies, such as connectors having insulation-piercing teeth designed to contact conductors within an insulative jacket.
While such developments have improved the overall architecture of industrial networks, further improvement is still needed. For example, a large number of applications exist for panel-mounted components which must be interfaced with external circuitry for remote operation, feedback, and control. Even with the improvements in industrial network media, elaborate and complex electrical component panels are currently assembled by terminating individual conductors routed through wireways in a panel structure. The wireways may be integral in the component panel, or may be added as trough-like conduits. Where additional higher voltage power is needed, separations between the lower voltage or instrumentation-level wiring and the higher voltage conductors is often required. However, conventional structures make little accommodation for such separation.
Even where innovative wiring and media solutions are available, such as in highly networked industrial control systems, actual installation and subsequent maintenance can be time-consuming and expensive processes. For example, in the case of electrical component enclosures and panels, routing of individual wires and conductors is commonly carried out during the panel and component installation phase. Wires are disposed in appropriate wireways, and are routed to individual components as these are secured in the panel. In one specific type of panel-mounted system, for example, commonly referred to as a motor control center, or MCC, individual components are coupled to external circuitry via multiple-conductor cable assemblies individually during their installation. Depending upon code and design requirements, the conductors may need to be separated from higher power wiring within the wireways, or the two sets of wiring must be routed through separate wireways. In the case of large panels and enclosures, assembly is difficult and time-consuming due to the need to measure, cut, prepare, install and terminate the individual wires and cable assemblies.
There is a need, therefore, for an improved technique for mounting and wiring connectors and cable assemblies in electrical component panels, enclosures, and the like. There is a particular need for a technique which would reduce or eliminate the need to handle and terminate separate wires or cables during component installation, and which would thereby reduce the time and complexity of component installation and interfacing.
SUMMARY OF THE INVENTION
The present invention provides a connector and cable assembly technique designed to respond to these needs. The technique may be employed in any of a variety of settings, but is particularly well suited to panel-mounted and enclosure-mounted components and wiring systems. The technique is specifically adapted to insulation-piercing cables which can be easily and efficiently installed with high quality connections in connectors designed to mount within the panels. The connectors include features facilitating their mounting in a panel section, such as a wireway base. The connectors are mounted on the panel, such as on a removable panel section, and interface directly with a media cable to form a cable assembly. In one preferred embodiment, the connectors include a socket which interfaces directly with insulation-piercing conductors, forming a finished cable assembly and panel combination in a straightforward assembly process.
REFERENCES:
patent: 4508399 (1985-04-01), Dowling
patent: 5575673 (1996-11-01), Dahlem et al.
patent: 5766035 (1998-06-01), Alibert
patent: 5813880 (1998-09-01), Kodama
patent: 6095867 (2000-08-01), Brandt et al.
Gerasimow Alexander M.
Gushi Ross
Paumen Gary
Rockwell Technologies LLC
Walbrun William R.
LandOfFree
Connector and cable system for panel-mounted circuitry does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Connector and cable system for panel-mounted circuitry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Connector and cable system for panel-mounted circuitry will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2519304