Connection fitting with clamping collet for elongated bodies

Pipe joints or couplings – Pipe to discreet nipple or sleeve to plate – Expandable detent engages plate to hold nipple

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C285S322000, C285S209000, C285S210000, C174S151000, C174S068300, C174S068300

Reexamination Certificate

active

06511099

ABSTRACT:

BACKGROUND
The invention relates to a connection fitting for the fastening of elongated bodies, for example cables, hoses, tubing, corrugated hose, or the like, at an opening such as a through hole or a cut-out in a wall of a building. This connection fitting includes a connection piece, which extends axially in the direction of insertion into the opening and affixes itself in the opening in its operational position. This connection piece, due to slotting which extends essentially in an axial direction, is circumferentially subdivided into holding tongues. A clamping collet protrudes, in its axial direction of insertion, within and beyond the connection piece. The clamping collet includes outwardly extending inclined members, which by a retraction back through the confining inner side of the connector which it now engages, the clamping collet is compressible radially inwardly. To engender this retraction of the clamping collet counter to the direction of insertion, a sheath is provided on its outside. Further, a stop is placed against the rim of the opening of the building wall, wherein the rim faces the direction of insertion. This stop exerts a holding force on the rim of the opening.
A connection fitting of this type has been disclosed by DE 198 28 059 A1 and has proved itself in service. This known connection fitting has the advantage of a simple mounting procedure by the insertion of the connector in the opening and the simultaneous snap-closure of the clamping collet which can flexibly expand in its cross-section. These features allow a simple screw movement on a sheath to bring about the tensioning of the clamping collet for the securement of the elongated bodies passing through the connection fitting assembly. However, the premounted positioning, in which an elongated body is not yet placed under stress, is relatively lightly secured and thus can be inadvertently released, or, in any case, be so far releasable, that later tightening up is inexact, and does not assure an optimal operational position. In such a case, then the most severe loadings cannot be transferred and in the case of a seal which must be simultaneously installed, the complete sealing integrity cannot be produced.
SUMMARY
On this account, the object of the invention is to create a connection fitting of the type described above, in which even a premounted positioning is precise and can be secured with assurance, even when the elongated bodies are not yet in a fixed position or cannot be so positioned immediately. By a tensioning of the clamping collet the best possible loading relationships are practically automatically attainable.
For the achievement of this object, the connection fitting defined in the introductory passages above is characterized, in that the connector of the connection fitting, in its operational position, possess radially, outwardly projecting, wall holding projections, and these projections are found in the direction of insertion of the connection fitting behind the opening and in that the stop is placed on a locking ring, which by its threading is displaceable against the connection fitting and its connector, and in that the sheath, which serves to tension the clamping collet by its threading, is itself placed in threaded engagement and is frictionally coupled with the locking ring in such a manner that the turning of the sheath for the said tensioning of the clamping collet also leads to the stop spatially approaching the housing wall, and in that the sheath can be additionally rotated, even if the locking ring with its stop abuts against the building wall.
A sheath for the tensioning of the clamping collet and a locking ring on the neighboring wall area of the opening are provided and the two screw movements thereof are so combined, that upon turning the sheath, the locking ring rotates along with it. The user thus needs only to fit the connection fitting into the opening and can subsequently turn the sheath to tension the clamping collet.
This action automatically leads to a situation, wherein the locking ring with the stop moves against the wall which borders the opening and firmly seats in that position. Furthermore, it is also possible, that different thicknesses of the wall at the opening zone, can be automatically compensated for. Since the locking ring is only frictionally connected with the sheath, the sheath can be further turned for final tensioning of the clamping collet, because the stop now abutting on the rim of the opening can no longer turn as before with the sheath.
Giving consideration to this situation, the sheath can nevertheless be further turned relative to the locking ring, until the clamping collet is fully radially tightened—in accordance with the thickness of the elongated body. By the friction based connection of the locking ring and the sheath, only a single screw motion is necessary to activate various functions, one being the adjustment of the connection fitting to the thickness of the wall, through the opening of which the connection fitting and connector partially penetrate, and another being the tensioning of the clamping collet in order to fix the elongated bodies in their axial direction.
With these advantages, thus a simple premounted positioning is made possible, in that first the connector element with the holding projections is inserted into an opening in a wall and set in place before the elongated body is drawn through. Thereafter, by the turning of the sheath, the stop is quickly moved into a clamping position, because the locking ring is automatically turned therewith. This is completed before the clamping collet itself—still in the same direction of rotation—is tensioned. As this is done, the elongated body, naturally is the last to be inserted in the connection fitting, before the inside diameter of the clamping collet is pressed against the outer diameter of the elongated body.
Before the final tensioning of the clamping collet, the mounting can be interrupted, if, specifically, the locking ring has reached the stop abutment. However, thereby, a reliable premounted positioning of the connection fitting on the corresponding wall can be effected.
An additional advantage of this arrangement can be seen in the fact that in a premounted positioning of this kind, the entire connection fitting is assured of freedom from being inadvertently rotated by the stop which is clampingly abutting the wall of the building.
The possibility of such a rotation would arise, if subsequent to the insertion, further turning of the sheath seizes and affixes an elongated body with the aid of the clamping collet. Conversely, in this way, a simple disassembly can be carried out.
A particularly simple and advantageous embodiment of the invention provides, that the sheath possess an open chamber located in its forward area, relative to the direction of insertion and axially neighboring its threading. This open chamber frictionally and radially encapsulates, either fully or partially, the end of the locking ring remote from the stop, or a projection of the locking ring, again remote from the stop. The sheath can then, by means of its open chamber, encapsulate the locking ring on the outside, making a frictional holding contact. If this is done, a turning of the sheath results in a corresponding rotation of the locking ring with its stop, which rotation continues, until a resistance is encountered, namely, the stop abuts on the rim of the opening.
At the same time, in the coupling zone between the sheath and the locking ring, a sealing or O-ring can be placed which will increase or produce the frictional force therebetween. The sealing ring or O-ring lies on the facing, frictionally touching surfaces of both parts, i.e. the sheath and the locking ring. It is true that a frictional closure could be brought about through a direct contacting connection of the sheath and the locking ring, however, a higher frictional bond can be achieved with such an O-ring and additionally, the function of a tight seal is achieved, so that this sealing O-ring fulfills a double functi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Connection fitting with clamping collet for elongated bodies does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Connection fitting with clamping collet for elongated bodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Connection fitting with clamping collet for elongated bodies will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3045917

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.