Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – With provision to conduct electricity from panel circuit to...
Reexamination Certificate
2000-12-05
2004-05-04
Abrams, Neil (Department: 2839)
Electrical connectors
Preformed panel circuit arrangement, e.g., pcb, icm, dip,...
With provision to conduct electricity from panel circuit to...
C439S067000
Reexamination Certificate
active
06729888
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates to a connecting structure in which an electrical connection is made between terminals by an elastic conductive member interposed between the terminals, and relates to an electro-optical device including such a connecting structure.
2. Description of the Related Art
For example, a method is known as a mounting technique for a liquid crystal display device, in which a rubber connector is used, the rubber connector including an elastic body, such as a rubber, and a conductor embedded in the elastic body or provided around the elastic body. In such a mounting technique, the rubber connector is inserted between a terminal of one substrate and a terminal of another substrate, and by supporting the rubber connector by applying a pressure so as to press both substrates using resilience of the elastic body of the rubber connector, the conductor is brought into contact with the terminals. Thus, the terminals can be electrically connected to each other with the conductor therebetween.
The mounting method using the rubber connector is advantageous because it is not necessary to use a soldering or thermal compression process in order to form a connection between the terminals, which is necessary when soldering or an anisotropic conductive film (ACF) is used. However, since the rubber connector is supported while being interposed between the terminals, the rubber connector may be shifted or detached due to impact, resulting in insufficient reliability in the connecting area.
It therefore is an object of the present invention to improve reliability in a connecting structure in which an electrical connection is made between terminals using an elastic conductive member, such as a rubber connector.
SUMMARY OF THE INVENTION
In order to achieve the object described above, in accordance with the present invention, a connecting structure includes a first substrate provided with a first terminal and an elastic conductive member including a conductive section connected to the first terminal. The conductive section is connected to the first terminal with a conductive adhesive therebetween. The conductive member is interposed between the first substrate and a second substrate provided with a second terminal, and the conductive section is connected to the second terminal.
In such a connecting structure, since the conductive section is connected to the first terminal with the conductive adhesive therebetween, even if an impact is applied, the conductive member is not detached or shifted, and the connection is stable. Thus, it is possible to improve the reliability of the electrical connection. Also, since the connecting area is covered by the conductive adhesive, it is possible to efficiently inhibit changes of the connection over time.
In order to achieve the object described above, in accordance with the present invention, a connecting structure includes a first substrate provided with a first terminal, a second substrate provided with a second terminal, and an elastic conductive member including a conductive section connected to the first terminal. The conductive section is connected to the first terminal with a conductive adhesive therebetween, the conductive member is interposed between the first substrate and the second substrate, and the conductive section is connected to the second terminal.
In such a connecting structure, since the conductive section is connected to the first terminal with the conductive adhesive therebetween, even if an impact is applied, the conductive member is not detached or shifted, and the connection is stable. Thus, it is possible to improve the reliability of the electrical connection. Also, since the connecting area is covered by the conductive adhesive, it is possible to efficiently inhibit changes of the connection over time.
Preferably, in either connecting structure described above, the conductive section is pressed onto the second terminal by resilience due to elastic deformation of the conductive member so that the conductive section is connected to the second terminal, thereby electrically connecting the first terminal and the second terminal to each other.
The conductive member may include an elastic insulating section, and the insulating section may be provided on the periphery of the conductive section.
The conductive member may include an elastic insulating section, and the conductive section may be embedded in the insulating section.
The conductive adhesive may be a hardened conductive paste. The conductive paste may be hardened by heat or may be hardened by irradiation of light, such as ultraviolet light.
The conductive paste may be an isotropic conductive paste.
The conductive paste may be an anisotropic conductive paste.
When the conductive paste is used, the connecting structure may be fabricated by a method including the steps of applying the conductive paste on the first terminal and hardening the conductive paste while the conductive member is pressed onto the first terminal.
When an isotropic conductive paste is used as the conductive paste, the conductive paste is applied in a shape corresponding to the shape of the first terminal. When an anisotropic paste is used as the conductive paste, the conductive paste may be applied to the region containing the first terminal so as to cover the first terminal.
The conductive adhesive may be an anisotropic conductive film.
When the anisotropic conductive film is used, the connecting structure may be fabricated by a method including the steps of placing the conductive film on the first terminal, and hardening or curing the anisotropic conductive film while the conductive member is pressed onto the first terminal with the anisotropic conductive film therebetween. The anisotropic conductive film may contain a thermosetting resin as a resin binder and may contain a thermoplastic resin as a resin binder.
In such a case, after the conductive film is applied to the region containing the first terminal so as to cover the first terminal, by heating the anisotropic conductive film while the conductive member is pressed onto the first terminal, the conductive member can be bonded to the first substrate by thermal compression. When the anisotropic conductive film contains a thermosetting resin as the resin binder, the resin binder is hardened during the thermal compression. When the anisotropic conductive film contains a thermoplastic resin as the resin binder, the resin binder is melted by heat during the thermal compression and then is cooled to be hardened.
The first substrate may be a substrate constituting an electro-optical panel.
In order to achieve the object described above, in accordance with the present invention, an electro-optical device includes a substrate constituting an electro-optical panel, and an elastic conductive member including a conductive section connected to a terminal provided on the substrate. The conductive section is connected to the terminal with a conductive adhesive therebetween.
In such an electro-optical device, since the conductive section is connected to the first terminal with the conductive adhesive therebetween, even if an impact is applied, the conductive member is not detached or shifted, and the connection is stable. Thus, it is possible to improve the reliability of the electrical connection. Also, since the connecting area is covered by the conductive adhesive, it is possible to efficiently inhibit changes of the connection over time.
In order to achieve the object described above, in accordance with the present invention, an electro-optical device includes a first substrate constituting an electro-optical panel, a second substrate provided with a second terminal, and an elastic conductive member including a conductive section connected to a first terminal provided on the first substrate. The conductive section is connected to the first terminal with a conductive adhesive therebetween, the conductive member is interposed between the first substrate and the second substrate, and th
Abrams Neil
Dinh Phuong
Harness & Dickey & Pierce P.L.C.
Seiko Epson Corporation
LandOfFree
Connecting structure, electro-optical device, and electronic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Connecting structure, electro-optical device, and electronic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Connecting structure, electro-optical device, and electronic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3239912