Conjugates of antiviral proteins or peptides and virus or...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S008100, C514S012200, C514S013800, C514S014800, C514S015800, C530S350000, C530S395000, C530S402000, C530S403000, C435S069100, C435S069700

Reexamination Certificate

active

06245737

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention relates to antiviral proteins and peptides, collectively referred to as cyanovirins, and conjugates thereof, as well as methods of obtaining antiviral cyanovirins and conjugates thereof, compositions comprising cyanovirins and conjugates thereof, and methods of using cyanovirins and conjugates thereof in clinical applications, such as in antiviral therapy and prophylaxis.
BACKGROUND OF THE INVENTION
Acquired immune deficiency syndrome (AIDS) is a fatal disease, reported cases of which have increased dramatically within the past several years. The AIDS virus was first identified in 1983. It has been known by several names and acronyms. It is the third known T-lymphotropic virus (HTLV-III), and it has the capacity to replicate within cells of the immune system, causing profound cell destruction. The AIDS virus is a retrovirus, a virus that uses reverse transcriptase during replication. This particular retrovirus is also known as lymphadenopathy-associated virus (LAV), AIDS-related virus (ARV) and, most recently, as human immunodeficiency virus (HIV). Two distinct families of HIV have been described to date, namely HIV-1 and HIV-2. The acronym HIV is used herein to refer to human immunodeficiency viruses generically.
HIV exerts profound cytopathic effects on the CD4
+
helper/inducer T-cells, thereby severely compromising the immune system. HIV infection also results in neurological deterioration and, ultimately, in death of infected individuals. Tens of millions of people are infected with HIV worldwide, and, without effective therapy, most of these are doomed to die. During the long latency, the period of time from initial infection to the appearance of symptoms, or death, due to AIDS, infected individuals spread the infection further, by sexual contacts, exchanges of contaminated needles during i.v. drug abuse, transfusions of blood or blood products, or maternal transfer of HIV to a fetus or newborn. Thus, there is not only an urgent need for effective therapeutic agents to inhibit the progression of HIV disease in individuals already infected, but also for methods of prevention of the spread of HIV infection from infected individuals to noninfected individuals. Indeed, the World Health Organization (WHO) has assigned an urgent international priority to the search for an effective anti-HIV prophylactic virucide to help curb the further expansion of the AIDS pandemic (Balter,
Science
266, 1312-1313, 1994; Merson,
Science
260, 1266-1268, 1993; Taylor,
J. NIH Res.
6, 26-27, 1994; Rosenberg et al.,
Sex. Transm. Dis.
20, 41-44, 1993; and Rosenberg,
Am. J. Public Health
82, 1473-1478, 1992).
The field of viral therapeutics has developed in response to the need for agents effective against retroviruses, especially HIV. There are many ways in which an agent can exhibit anti-retroviral activity (e.g., see DeClercq,
Adv. Virus Res.
42, 1-55, 1993; DeClercq,
J. Acquir. Immun. Def. Synd.
4, 207-218, 1991; and Mitsuya et al.,
Science
249, 1533-1544, 1990). Nucleoside derivatives, such as AZT, which inhibit the viral reverse transcriptase, are the only clinically active agents that are currently available commercially for anti-HIV therapy. Although very useful in some patients, the utility of AZT and related compounds is limited by toxicity and insufficient therapeutic indices for fully adequate therapy. Also, given the recent revelations about the true dynamics of HIV infection (Coffin,
Science
267, 483-489, 1995; and Cohen,
Science
267, 179, 1995), it is now increasingly apparent that agents acting as early as possible in the viral replicative cycle are needed to inhibit infection of newly produced, uninfected immune cells generated in the body in response to the virus-induced killing of infected cells. Also, it is essential to neutralize or inhibit new infectious virus produced by infected cells.
Therefore, new classes of antiviral agents, to be used alone or in combination with AZT and/or other available antiviral agents, are needed for effective antiviral therapy against AIDS. New agents, which may be used to prevent HIV infection, are also important for prophylaxis. In both areas of need, the ideal new agent(s) would act as early as possible in the viral life cycle; be as virus-specific as possible (i.e., attack a molecular target specific to the virus but not the host); render the intact virus noninfectious; prevent the death or dysfunction of virus-infected cells; prevent further production of virus from infected cells; prevent spread of virus infection to uninfected cells; be highly potent and active against the broadest possible range of strains and isolates of HIV; be resistant to degradation under physiological and rigorous environmental conditions; and be readily and inexpensively produced on a large-scale basis.
Accordingly, it is an object of the present invention to provide antiviral proteins and peptides, and conjugates thereof, which possess the aforementioned particularly advantageous attributes.
It is a related object of the present invention to provide conjugates or chimeras containing an antiviral protein or peptide coupled to an effector molecule.
It is still another object of the present invention to provide a composition, in particular a pharmaceutical composition, which inhibits the growth or replication of a virus, such as a retrovirus, in particular a human immunodeficiency virus, specifically HIV-1 or HIV-2.
It is another object of the present invention to provide methods of obtaining an antiviral protein or peptide or conjugate thereof.
It is yet another object of the present invention to provide nucleic acid molecules, including recombinant vectors, encoding such antiviral proteins and peptides and conjugates thereof. A more specific object of the present invention is to provide a DNA coding sequence comprising SEQ ID NO:1.
It is another specific object of the present invention to provide a DNA coding sequence comprising SEQ ID NO:3.
Yet another object of the present invention is to provide a method of using an antiviral protein or peptide to target an effector molecule to virus and/or to virus-producing cells, specifically to retrovirus and/or to retrovirus-producing cells, more specifically to HIV and/or HIV-producing cells, and even more specifically to viral gp120 and/or cell-expressed gp120.
Still yet another object of the present invention is to provide a method of treating an animal, in particular a human, infected by a virus, such as a retrovirus, in particular a human immunodeficiency virus, specifically HIV-2 or HIV-2. A related object of the present invention is to provide a method of treating an animal, in particular a human, to prevent infection by a virus, such as a retrovirus, in particular a human immunodeficiency virus, specifically HIV-1 or HIV-2.
It is another related object of the present invention to provide a method of treating inanimate objects, such as medical and laboratory equipment and supplies, to prevent infection of an animal, in particular a human, by a virus, such as a retrovirus, in particular a human immunodeficiency virus, specifically HIV-1 or HIV-2. It is a further related object of the present invention to provide a method of treating injectable or infusible fluids, suspensions or solutions, such as blood or blood products, and tissues to prevent infection of an animal, in particular a human, by a virus, such as a retrovirus, in particular a human immunodeficiency virus, specifically HIV-1 or HIV-2.
These and other objects of the present invention, as well as additional inventive features, will become apparent from the description provided herein.
BRIEF SUMMARY OF THE INVENTION
The present invention provides antiviral agents, in particular antiviral proteins and peptides, collectively referred to as cyanovirins, and conjugates thereof, which are useful for antiviral therapy and prophylaxis. Cyanovirins and conjugates thereof inhibit the infectivity, cytopathicity and replication of a virus, in particular a retrovirus, specifically a human immunodefi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Conjugates of antiviral proteins or peptides and virus or... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Conjugates of antiviral proteins or peptides and virus or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Conjugates of antiviral proteins or peptides and virus or... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2532358

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.