Confocal microscope for optical determination of an...

Optical: systems and elements – Compound lens system – Microscope

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S202100

Reexamination Certificate

active

06407856

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a confocal microscope for optical detection of an observation volume, as used, in particular, influorescence spectroscopy.
RELATED ART
A confocal microscope adapted to optically determine processes taking place in an observation volume is known from PCT/EP94/00117. This known microscope is employed in particular in fluorescence correlation spectroscopy (FCS). The known microscope comprises a light source, which, in particular, is a laser light source, generating a laser light beam. The laser light beam impinges on a dichroic mirror, possibly after being conditioned by a lens arrangement, which mirror reflects the light towards an objective lens arrangement having a mechanic aperture and focusing the light onto the observation chamber. The laser light entering the observation chamber excites fluorescence in, for example, a biological sample within the observation volume, depending on the composition thereof. The resulting fluorescent light reaches the objective lens arrangement from where it passes through the dichroic mirror to impinge on an observation optic arrangement with which the processes in the observation volume may be optically determined.
The known confocal microscope has proven generally successful in practice. However, depending on the samples to be studied, relatively long examination periods are required to observe the generation of fluorescent light in the sample and to collect a sufficient amount of (optical) data that would allow for a quantitative evaluation of the processes happening in the sample.
SUMMARY OF THE INVENTION
It is the object of the invention to provide a confocal microscope for optical detection of an observation volume to be used in fluorescence spectroscopy, which microscope allows for an optical detection of samples in a shorter period of time.
According to the invention, the object is solved with a confocal microscope provided with
a light source for generating excitation light,
a dichroic mirror reflecting the excitation light impinging thereon from the light source,
an objective lens arrangement with a mechanical aperture, receiving the excitation light reflected by the dichroic mirror and focusing the light on the observation volume, and
an observation lens arrangement receiving light coming from the observation volume and passing through the dichroic mirror.
According to the invention, this confocal microscope is characterized in that
between the dichroic mirror and the objective lens arrangement, a deflection mirror arrangement is located having a planar deflection mirror at the side of the objective, which mirror is arranged to oscillate about a normal position, such that
upon oscillation of the objective-side mirror, the optical axes of the respective reflected excitation light intersect in a substantially common intersection in the area of the mechanical aperture of the objective lens arrangement, and
the oscillation axis of the objective-side deflection mirror coincides with the line of intersection of the plane, in which the objective-side deflection mirror lies, and the plane extending through the common intersection of the optical axes of the reflected excitation light and perpendicular to the optical axis of the reflected light, when the objective-side deflection mirror is in its normal position.
The present confocal microscope is provided with a deflection mirror arrangement comprising at least one deflection mirror (on the side of the objective). This objective-side deflection mirror is arranged for oscillation about a normal position. Oscillating this deflection mirror, the angle under which the excitation light impinges on the objective lens arrangement is varied. Here, the invention provides that the excitation light is moved in the mechanical aperture of the objective lens arrangement such that the beam of excitation light is at the center of the mechanical aperture under any angle of incidence. In other words: upon oscillation of the objective-side deflection mirror, the optical axes of the respective reflected excitation light intersect at a substantially common intersection that lies within the area of the mechanical aperture and is situated, in particular in the propagation direction of the excitation light, behind the mechanical aperture of the objective lens arrangement. Here, the axis about which the objective-side deflection mirror oscillates coincides with the line of intersection of the plane, in which the planar objective-side deflection mirror lies, and the plane extending through the common intersection of the optical axes of the respective reflected excitation light and running vertical to the optical axis of the reflected excitation light, when the objective-side deflection mirror is in the normal position.
With the present microscope, expanded light beams of larger diameter may be coupled into the objective lens arrangement without parts of the profile of the excitation light beam being cut off when the angle of incidence is changed. According to the invention, this is achieved by merely providing a planar deflection mirror, i.e., specifically, no sophisticated optic elements are required. The deflection mirror of the deflection mirror arrangement has an oscillation drive and preferably oscillates to up to 5°, preferably up to 3° and in particular by 2°, on both sides of its normal position. Suitable oscillation drives are generally known in the art.
In the present microscope, the excitation optic between the observation volume and the dichroic mirror also forms part of the detection optic which is completed by the observation optic arrangement arranged behind the dichroic mirror. Thus, the present microscope is a truly confocal system.
Preferably, the deflection mirror arrangement of the present confocal microscope is a back-up optic for existing confocal microscopes that may be added to these without necessitating an intervention with the optical structure of the existing microscope. As a rule, the existing confocal microscope has an expanded and collimated excitation light beam that may be coupled directly into the objective via the deflection mirror arrangement. To this end, the deflection mirror arrangement merely has to be screwed into the (barrel) opening of the standing microscope. The objective lens arrangement of the existing microscope is mounted directly to the deflection mirror arrangement itself.
Using a deflection mirror makes it possible to reciprocally move the excitation light reflected by the objective lens arrangement in one dimension, i.e. linearly, back and forth through the sample. In order to move the observation volume (i.e., the focused excitation light) two-dimensionally through the sample, a preferred embodiment of the invention provides for the additional use of a deflection mirror on the side of the light source, which is arranged between the objective-side deflection mirror and the dichroic mirror. The deflection mirror on the side of the light source also oscillates about a normal position such that when the deflection mirror on the side of the light source is oscillated, the optical axes of the respective reflected excitation light intersect approximately in a substantially common intersection situated in the area of the plane of the objective-side deflection mirror. Both deflection mirrors oscillate about mutually rectangular oscillation axes, the oscillation axis of the deflection mirror on the side of the light source coinciding with the line of intersection of the plane of the deflection mirror on the side of the light source and the plane extending through the common intersection of the optical axes of the reflected excitation light and vertical to the optical axis of the reflected light, when the deflection mirror on the side of the light source is in its normal position. Using two deflection mirrors oscillating about mutually vertical axes, the focused light may be moved through the sample in a plane, i.e. two-dimensionally.
The essential aspect of the present confocal microscope is that by the special arrangement of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Confocal microscope for optical determination of an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Confocal microscope for optical determination of an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Confocal microscope for optical determination of an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2983390

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.