Configuration in which wafers are individually supplied to...

Electricity: measuring and testing – Measuring – testing – or sensing electricity – per se – With rotor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S765010, C700S112000, C414S273000

Reexamination Certificate

active

06809510

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a configuration for processing wafers having fabrication units, measuring units, and a transport system for conveying a cassette of the wafers between the fabrication units and the measuring units.
These types of devices contain a number of fabrication units, with which various finishing steps are carried out. These finishing steps include various treatment steps in etching processes, wet chemical processes, diffusion processes, and various cleaning techniques such as CMP (Chemical Mechanical Polishing). One or more fabrication units are provided for each of these finishing steps. In addition, measuring units are provided, in which the quality of the wafer processing can be checked.
The overall fabrication process is subject to stringent purity requirements, for which reason the fabrication units and measuring units are disposed in a clean room or a system of clean rooms.
The wafers are supplied to the individual fabrication units in cassettes in predetermined batch sizes by way of a transport system. The wafers are also removed in cassettes by way of the transport system, after being processed in the fabrication and measuring units.
The transport system typically includes a conveyor system, which is constructed in the form of roll conveyors, for instance. A predetermined number of cassettes are supplied to a fabrication unit or measuring unit for processing via the transport system. The fabrication unit or measuring unit respectively includes a loading and unloading station, via which a respective cassette with wafers can be inserted. After all of the wafers of a cassette have been processed in the fabrication unit or measuring unit, the cassette with the wafers is output again by way of the loading and unloading station and is transported out via the conveyor system.
Because of the relatively long transport paths between the individual fabrication and measuring units and the different processing capacities of the fabrication and measuring units, storage systems, such as stockers, are provided in near the fabrication and measuring units, and these stockers are a component of the transport system. Cassettes with wafers can be stored in a stocker under clean-room conditions and can be fed to the individual fabrication and measuring units as needed.
One disadvantage of this method is the large installation expenditure for the transport system. Specifically, storing the cassettes in the stockers is time-consuming and costly. Another disadvantage is that the conveyor system consists of linear systems such as roll conveyors, which can only be branched to a limited degree. The general result of this is that the construction of the transport system substantially determines the configuration of the fabrication units and measuring units. Therefore, the fabrication units and measuring units are usually not arranged in accordance with their functionalities. This leads to a certain inefficiency in the transport of individual wafers.
A further disadvantage is the need to wait for all of the wafers of a cassette to be processed in a fabrication or measuring unit before the entire batch in the cassette is forwarded to the transport system via the loading and unloading station in order to be transported out. If, for example, the wafers of a cassette are first processed in a fabrication unit, and then the processing quality is checked in a measuring unit, then all of the wafers of a cassette must be processed before the checking process can occur in the measuring unit. Only then can subsequent additional measures be taken in dependence upon the measurement results. The throughput times of the cassettes with the wafers through the system are therefore undesirably high.
U.S. Pat. No. 5,803,932 describes a processing system for processing wafers. This processing system includes a loading/unloading section, a processing section and an interface section. In addition, a transport mechanism and at least two waiting sections are provided.
The transport mechanism is located between the loading/unloading section and the interface section. A plurality of processing units, which form the processing section, are disposed on either side of the transport mechanism. The wafers are transported on the transport mechanism either in the direction of the loading/unloading section or in the direction of the interface section.
U.S. Pat. No. 5,443,346 describes a transport system for transporting wafers in a clean room. The wafers are first transported in first cassettes by way of an interbay conveyor system, arriving at interface equipment. In the interface equipment, the wafers are removed from the first cassettes and reloaded into second cassettes in a predetermined arrangement. Then, the second cassettes are successively fed to different processing units by way of an intrabay conveyor system, where the wafers are processed in a variety of ways.
Published German Patent Application DE 195 14 037 A1 relates to a transport device for transporting substrates. The transport device is constructed as a turntable, which is driven at a constant cycle frequency. The substrate can be fed to a processing station, which is provided outside the turntable by means of a rotating substrate gripper.
Published Japanese Patent Application JP 08268512 A relates to a storage unit for storing substrates. The storage unit includes a sorting unit, by means of which the substrates are automatically sorted and moved into or out of the storage unit in cassettes.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a configuration for processing wafers which overcomes the above-mentioned disadvantages of the prior art apparatus of this general type. In particular, it is an object of the invention to optimally minimize the throughput time for processing a wafer in configuration of the above described type.
With the foregoing and other objects in view there is provided, in accordance with the invention, a configuration for processing wafers that includes: a plurality of fabrication units for carrying out individual fabrication steps; a plurality of measuring units for checking the fabrication steps; a transport system for transporting cassettes having a predetermined batch size of wafers, the transport system connecting the plurality of the fabrication units and the plurality of the measuring units; and a fabrication cell including a combination of functionally allocated units selected from the group consisting of the plurality of the fabrication units and the plurality of the measuring units. The fabrication cell includes a loading and unloading station for receiving the cassettes with the wafers and for outputting the cassettes with the wafers. Individual wafers are supplied in a parallel manner to the functionally allocated units in the fabrication cell. The plurality of the fabrication units, the plurality of the measuring units, the transport system, and the fabrication cell are located in at least one clean room.
In accordance with an added feature of the invention, one or more fabrication cells are provided, in which several fabrication and/or measuring units are combined. Each fabrication cell includes a loading and unloading station for delivering cassettes, with wafers, in and out. Within the fabrication cells, the wafers can be individually supplied to the fabrication units and/or measuring units in a parallel fashion.
The fabrication units and measuring units are allocated according to function, whereby the functions of the individual fabrication and measuring units expediently make up a fabrication process.
The essential advantage of such a fabrication cell is that the wafers of a cassette no longer need to be serially processed in the individual fabrication units and measuring units. Rather, the wafers can be individually fed to the fabrication and measuring units as needed, making it possible to process the wafers within a fabrication cell in a parallel fashion. What is particularly advantageous is the ability to feed a wafer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Configuration in which wafers are individually supplied to... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Configuration in which wafers are individually supplied to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Configuration in which wafers are individually supplied to... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3326724

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.