Configuration for multiplexing and/or demultiplexing the...

Optical waveguides – With optical coupler – Input/output coupler

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S024000

Reexamination Certificate

active

06788850

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a configuration for multiplexing and/or demultiplexing the signals of at least two optical wavelength channels. The configuration contains an optical grating device for transforming a first optical power of each of the channels. The optical grating device has a specific common region of space assigned in common to all of the channels to which the first optical power is fed and is transformed into a second optical power that is concentrated in each case to one of a plurality of specific separate regions of space each assigned to one of the channels alone, and vice versa. The optical grating device contains an optical grating, a first optical free beam region disposed between the specific common region of space assigned in common to all of the channels and the optical grating, a second optical free beam region disposed between the optical grating and each of the specific separate regions of space are each assigned to one of the channels alone, and a coupling device for coupling light into or out of all of the channels into the first free beam region. The light coupled in or out traverses the specific common region of space assigned in common to all of the channels. A plurality of waveguides is provided. One of the waveguides is assigned to each of the channels alone, the waveguides are coupled in each case to the second free beam region.
A multiplexing/demultiplexing configuration of the generic type is disclosed, for example, in International Patent Disclosure WO 96/00915. The configuration described there has a grating device that is used both to separate and to combine the wavelength channels. The grating device has an optical grating, an optical free beam region that is disposed between a point in space assigned in common to all channels, and the optical grating, and an optical free beam region that is disposed between the optical grating and each point in space assigned one channel alone.
In a particular embodiment of this type, the optical grating contains a phased array, that is to say of a plurality of strip-shaped optical waveguides, each of which has a first end face which faces the point in space assigned in common to all channels, and a second end face which faces the points in space, to each of which one channel each is alone assigned. An optical length between the first end face and the second end face varies from waveguide to waveguide.
If, as a demultiplexer, the particular embodiment is operated in the case of which the channels are spatially separated, the first end faces of the waveguides of the phased array form entrance apertures of the grating, and the second end faces of the waveguides form exit apertures of the grating. When this embodiment is operated as a multiplexer, in the case of which the spatially separated channels are combined, the second end faces of the waveguides of the phased array form entrance apertures of the grating, and the first end faces of the waveguides form exit apertures of the grating. The waveguides of the phased array act in all cases as optical phase gratings.
Instead of a grating in the form of a phased array, it is also possible to use other optical gratings, for example etched gratings (see IEEE, Photonics Technology Lett., Vol. 8, No. Oct. 10, 1996, pages 1340 to 1342).
The grating device of such a configuration determines a wavelength-dependent transmission function of each strip-shaped optical waveguide that is assigned to one channel alone and/or to all channels in common, and an end face that faces the grating device and is disposed at the point in space that is assigned to one channel alone or all channels in common. The transmission function is a Gaussian function, at least to a first approximation (see the above-mentioned IEEE document).
A more rectangular profile of the wavelength-dependent transmission function of such a waveguide would be more favorable such that in the event of fluctuations in the ambient temperature and/or wavelength the insertion loss of the waveguide changes only insignificantly in a certain wavelength region.
Various possibilities have been described for flattening the inherent quasi-Gaussian transmission function of such a waveguide, that is to say for shaping it in a more rectangular fashion.
Thus, it is known from Electr. Lett., 30, 1994, pages 300-301 to configure the waveguide assigned to one channel alone not, as customary, as a monomode waveguide, but as a multimode waveguide in order to flatten the transmission function thereof.
It is known from Proc. ECOC, Birmingham 1997, Conference Publication No. 448, IEEE 1997, pages 79, 82 to interleave two slightly different phased arrays with one another such that in the case of the point in space of the configuration that is assigned to one channel alone two quasi-Gaussian transmission functions specifically displaced spectrally are superimposed on one another to form a broader flattened transmission function.
It is also known to configure a configuration such that in the case of the point in space of the configuration that is assigned to all the channels in common two mutually overlapping quasi-Gaussian transmission functions are present that can be implemented with the aid of a 3-dB beam splitter (see U.S. Pat. No. 5,412,744), with the aid of what is termed a multimode interference coupler (see above-mentioned IEEE document) and/or with the aid of what is termed a horn structure (see Electr. Lett. 32, 1996, pages 1661-1662). The flattened transmission function, produced at this point in space, in the form of the two overlapping quasi-Gaussian transmission functions is projected by the grating device onto each point in space of the configuration that is assigned to one channel alone.
In the case of the three last mentioned implementations, the decisive flattening operation is the formation of a convolution integral from an electric field distribution in accordance with the overlapping quasi-Gaussian transmission functions with the Gaussian-type mode of each waveguide assigned to one channel alone.
It is known from Optics Lett. 20, 1995, pages 43-45 to change the electric field distribution in the case of the second end faces, forming the exit apertures of the grating, of the waveguides of the phased array. The basis of this implementation is that the free beam region disposed between the end faces and the separate points in space each assigned to one channel alone has a lens effect, and the electric field distribution at the end faces and the electric field distribution at the separate points in space are therefore linked via a Fourier transformation. Through suitable selection of the cross section of the waveguides of the phased array and an additional change to the optical length of the waveguides, it is possible to produce an electric field distribution with, correspondingly, the sin(x)/x function at the second end faces of the waveguides, which function is transformed by the Fourier transformation into a rectangular field distribution at a separate point in space.
Finally, International Patent Disclosure WO 99/52003 describes a configuration for spatial separation and/or combination of at least two optical wavelength channels having an optical phased array device that has a device for generating an attenuation function for a wavelength-dependent attenuation of the transmission function of at least one of the waveguides. Consequently, a suitable field distribution is subtracted from the field distribution of the uninfluenced phased array. This cuts off the top part of the transmission curve.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a configuration for multiplexing and/or demultiplexing the signals of at least two optical wavelength channels which overcomes the above-mentioned disadvantages of the prior art devices of this general type, which configuration provides a rectangular or flatter profile of the filter curves for the individual wavelengths.
With the foregoing and other objects in view there is provided, in accordanc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Configuration for multiplexing and/or demultiplexing the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Configuration for multiplexing and/or demultiplexing the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Configuration for multiplexing and/or demultiplexing the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3249552

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.