Confectionery compositions

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Food or edible as carrier for pharmaceutical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S660000, C424S057000, C424S435000

Reexamination Certificate

active

06706277

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to confectionery compositions such as breath mints, low boiled candy, hard boiled candy, coated candy, lozenges, oral pasta, pressed mints, throat drops and the like, that comprise polyphosphate with an average anion chain length of greater than or equal to 4 and wherein the confectionery composition comprises less than 10%, by weight of the composition, water and less than 2%, by weight of the composition, elastomer. Preferably this invention relates to non-cariogenic or so called “sugar free” confectionery compositions. More particularly this invention relates to compositions that have anti-calculus and surface conditioning effects in the oral cavity. Compositions of the present invention are suitable for use by humans or animals.
BACKGROUND OF THE INVENTION
Dental plaque is the name given to a deposit of material that accumulates on the teeth and adjacent surfaces of the oral cavity. It is the product of microbial growth in the oral cavity, primarily derived from the food/sugar residues in the mouth. Mucoproteins, minerals and food deposits present in the saliva, and dead cells in the mouth, also contribute to the formation of plaque. The build up of plaque enhances the formation of calculus, a hard mineral material that deposits on teeth. Calculus is formed when calcium phosphate crystals, which become entangled in the plaque film, become sufficiently closely packed together to aggregate and become resistant to deformation. The build up of both plaque and calculus on the teeth leads to a general decline in oral health resulting in an increase in the rate of formation of dental caries, an increase in the prevalence of gum disease and can also contribute to the staining of teeth and the presence of malodour. If left untreated these conditions can lead to severe oral disease and deterioration of the gums and teeth.
Several anti-plaque and anti-calculus agents are known in the art. One such material is linear or cyclic dehydrated polyphosphate, which is known to be an effective calcium/magnesium ion suppressor, a sequestrant and/or chelating agent and an effective inhibitor of calculus formation. Well-known examples are the water soluble hexametaphosphates, tripolyphosphate and pyrophosphates and the like. These materials have been widely disclosed in oral care compositions such as dentifrice. Examples of such disclosures include U.S. Pat. No. 5,094,844 which discloses oral compositions comprising tripolyphosphate; U.S. Pat. No. 4,460,565 which discloses oral compositions comprising two or more fluoride compounds and an agent capable of supplying calcium ions to the teeth optionally in conjunction with a cyclic phosphate; WO 99/12517 which discloses oral compositions comprising tripolyphosphate, pyrophosphate and PVP; JP 10-182388 which discloses compositions comprising cyclic and linear condensed phosphoric acid and curry extract and JP 9-295942 which discloses an agent for preventing tooth decay comprising at least 1 meta phosphate. Such polyphosphates are also known to provide a buffering effect within oral compositions comprising zinc (U.S. Pat. No. 4,170,632 and U.S. Pat. No. 4,170,633 both to Wagenknecht). In addition, the pending patent application PCT/US00/30808 reports that long chain linear polyphosphates with an average anion chain length of greater than or equal to 4 provide novel surface conditioning benefits to the teeth and mucosa. This leads to an improved cleaning impression.
However, one of the commonly known issues with polyphosphates, especially long chain polyphosphates, is that they are rapidly hydrolysed and therefore their efficacy is reduced over time. Furthermore, when the polyphosphate is introduced into the oral cavity, salivary enzymes quickly hydrolyse the material, again leading to a reduction in desired efficacy. The prior art suggests that this can be prevented by use of the polyphosphate in combination with fluoride and polyvarboxylate (U.S. Pat. No. 4,627,977 and EP 333,301). However, this provides several formulation limitations, both regarding the type of polyphosphate that can be used and in controlling the relative ratio of the polyphosphate to other ingredients. As such there are several opportunities to further optimise the formulation of oral care products comprising polyphosphate to overcome these hydrolysis issues.
Furthermore, there is currently a movement in the oral care industry to encourage consumers to use dental hygiene products throughout the day and to brush their teeth more often. However, this is at best inconvenient and is often not possible. As such significant developmental effort has been focused towards developing oral care products in forms which are portable, which can be used several times a day, particularly after eating and which provide anti-plaque and anti-calculus benefits comparable to those obtained by regular brushing with dentifrice. It is hoped that such a product will improve the oral hygiene of consumers. In addition, such a product would make it easier to provide good oral hygiene to children and pets where it is not always easy to regularly brush the teeth.
Confectionery compositions which are popular with both children and adults alike and which are retained in the oral cavity for substantial periods of time during consumption, would seem to make an ideal product form for a portable oral care product. The art of the development and manufacture of a wide range of confectionery compositions is well known. However, the high sugar content of such confectionery compositions has been recognised as a contributory factor in poor dental health. Developments have been made to produce “sugar free”, or non-cariogenic, confectionery which retain their organoleptic properties but which do not contribute to the formation of dental plaque. More recently research has turned to developing confectionery compositions, particularly “sugar free” confectionery compositions, particularly chewing gum compositions, which comprise one or more oral care agents. One such example is WO 99/44436, which discloses coated chewing gum compositions which comprise materials with known oral care benefits. However, although chewing gum products have several advantages, they also have several disadvantages in that the chewing of gum is considered unsightly by some consumers and is not acceptable in certain societies. In addition, the chewing gum product format is not ideal for administering to pets and children. As such there is a need for a confectionery oral care product form, or range of forms, which are acceptable in a wide range of societies but which maintain high degrees of oral care efficacy, particularly anti-plaque and anti-calculus efficacy.
The use of polyphosphate in confectionery compositions has been reported in the art. Examples include EP 309,414 which discloses chewing gum compositions comprising gum base and an anti-calculus active selected from polyphosphate, citrates and malates; U.S. Pat. No. 4,908,211 which discloses chewing gum comprising a sanguinarine and optionally a polypyrophosphate; U.S. Pat. No. 5,702,687 which discloses chewing gum compositions optionally comprising pyrophosphate or polyphosphate compositions; pending patent application PCT/US00/17177 which discloses chewing gum compositions comprising polyphosphate and U.S. Pat. No. 4,151,270 which discloses chewing gum compositions optionally comprising tripolyphosphate. Whilst the teaching of the prior art provide useful teachings as to the development of chewing gum compositions comprising short chain polyphosphates they do not teach how to develop a wide range of non chewing gum confectionery compositions comprising polyphosphate. Nor do they teach how to formulate such compositions with excellent anti-calculus benefits. Finally the prior art does not teach how to stabilise long chain polyphosphates in the formulation such that the anti-calculus benefits are retained over time.
Low levels of polyphosphates are also known in the confectionery art for their ability to stabilise whippable emulsion syste

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Confectionery compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Confectionery compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Confectionery compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3203642

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.