Conductor trace array having passive stub conductors

Dynamic magnetic information storage or retrieval – Head mounting – For shifting head between tracks

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S266300

Reexamination Certificate

active

06275358

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to a structure and method for controlling electrical properties of a conductor trace array for connecting a magnetic head to electronics in a magnetic hard disk drive. More particularly, the present invention provides electrically isolated (“passive”) conductor strips which are positioned on either side of each pair of current-carrying (“active”) conductor strips to improve the characteristic impedance of the conductor trace array.
BACKGROUND OF THE INVENTION
Contemporary magnetic hard disk drives typically include a rotating rigid storage disk and a bead positioner for positioning a data transducer at different radial locations relative to the axis of rotation of the disk, thereby defining numerous concentric data storage tracks on each recording surface of the disk. The head positioner is typically referred to as an actuator. Although numerous actuator structures are known in the art, in-line rotary voice coil actuators are now most frequently employed due to their simplicity, high performance, and their ability to be mass-balanced about their axis of rotation, the latter being important for making the actuator less sensitive to perturbations. A closed-loop servo system within the disk drive is conventionally employed to operate the voice coil actuator and thereby position the heads with respect to the disk storage surface.
The read/write transducer, which may be of a single or dual element design, is typically deposited upon (or carried by) a ceramic slider structure having an air bearing surface for supporting the transducer at a small distance away from the surface of the moving medium. Single write/read element designs typically require two-wire connections while dual designs having separate reader and writer elements require two pairs of two-wire connections. Magnetoresistive (MR) heads having separate inductive write elements in particular generally require four wires. The combination of an air bearing slider and a read/write transducer is also known as a read/write head or a magnetic recording head.
Sliders are generally mounted to a gimbaled flexure structure attached to the distal end of a suspension's load beam structure. A spring biases the load beam and the head towards the disk, while the air pressure beneath the head developed by disk rotation relative to the slider pushes the head away from the disk. The gimbal enables the slider to present a “flying” attitude toward the disk surface and follow its topology. An equilibrium distance defines an “air bearing” and determines the “flying height” of the head. By utilizing an air bearing to support the head away from the disk surface, the head operates in a hydrodynamically lubricated regime at the head/disk interface rather than in a boundary lubricated regime. The air bearing maintains a spacing between the transducer and the medium which reduces transducer efficiency. However, the avoidance of direct contact vastly improves the reliability and useful life of the head and disk components.
Currently, nominal flying heights are on the order of 0.5 to 2 microinches. The magnetic storage density increases as the head approaches the storage surface of the disk. Thus, a very low flying height is traded against device reliability over a reasonable service life of the disk drive. At the same time, data transfer rates to and from the storage surface are increasing; and, data rates approaching 400 megabits per second are within practical contemplation.
The disk drive industry has been progressively decreasing the size and mass of the slider structures in order to reduce the moving mass of the actuator assembly and to permit closer operation of the transducer to the disk surface, the former giving rise to improved seek performance and the latter giving rise to improved transducer efficiency that can then be traded for higher areal density. The size (and therefore mass) of a slider is usually characterized with reference to a so-called standard 100% slider (“minislider”). The terms 70%, 50%, and 30% slider (“microslider”, “nanoslider”, and “picoslider”, respectively) therefore refer to more recent low mass sliders that have linear dimensions that are scaled by the applicable percentage relative to the linear dimensions of a standard minislider. Sliders smaller than the 30% picoslider, such as a 20% “femtoslider”, are presently being considered and are in early development by head vendors. As slider structures become smaller, they generally require more compliant gimbals; hence, the intrinsic stiffness of the conductor wires attached to the slider can give rise to a significant undesired mechanical bias effect.
Trace interconnect arrays typically support or aid in supporting the slider next to the data storage surface, and to connect read and write elements of the head with external circuitry. Two conductor paths are typically required for the write element, and two conductor paths are required for the read element, of the magnetic head. The interconnect array, typically formed on a polyimide film substrate, may extend from the slider to a preamplifier/write driver circuit, either directly, or via one or more intermediate interconnect trace arrays. These designs typically include trace segments extending from the flexure to a signal connection point which may be located on the side of the rotary actuator, for example. Since these conductor trace interconnect arrays are low in profile, and are precisely formed printed circuits upon plastic film substrates, they tend to have more predictable mechanical properties than discrete wire conductors used in the past, thereby improving tolerances in manufacturing and operation.
In transmission lines and interconnects of the type under contemplation, it is important to reduce the effect of the interconnect on the source (the preamp circuit for the read element and the write driver circuit for the write element, in a magnetic recording head, for example). The inductance and capacitance parameters of the trace array introduce a phase-change in the current/voltage waveforms, and most designs are made to minimize undesired effects of inductance and/or capacitance upon overall circuit performance. Moreover it is desirable to have a uniform characteristic impedance at any point along the trace array because such uniform characteristic impedance reduces signal distortion as well as minimizes reflections between the source and the head. The characteristic impedance per unit length of the traces included within the array is defined, at high frequencies, as the square-root of the ratio of the inductance to the capacitance of the traces.
One typical length of a trace array employed within a 3.5 inch disk drive, for example, is 45 millimeters (mm). One segment of this trace array is positioned over and in a close or contact relationship with the flexure and loadbeam structures and is approximately 18 mm in length. Another segment of the trace is supported in air and extends from the loadbeam to the preamplifier/write driver circuit and is approximately 27 mm in length. Other form factor disk drives, such as 2 inch disk drives or 3 inch disk drives for example, will also have similarly proportioned trace array segment lengths.
The 27 mm segment of the array is suspended in air because it is desirable during the manufacturing process to provide a flexible segment of the trace array to facilitate connection with the preamplifier/write driver circuit. As a result, the capacitance of the conductor traces in this segment of the array is relatively low with respect to ground. This relatively low capacitance results in a generally higher characteristic impedance per unit length in this segment of the array. On the other hand, the 18 mm segment of the array, which is positioned in close proximity to the flexure and loadbeam structures, which structures are typically formed of stainless steel, forms a ground plane between flexure and loadbeam structures and the 18 mm segment of the array. As a result, a capacitive coupling relationship is formed bet

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Conductor trace array having passive stub conductors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Conductor trace array having passive stub conductors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Conductor trace array having passive stub conductors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2478266

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.