Wells – Processes – Specific propping feature
Reexamination Certificate
2002-04-19
2004-04-27
Walker, Zakiya (Department: 3672)
Wells
Processes
Specific propping feature
C166S308100
Reexamination Certificate
active
06725930
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
This invention relates generally to the art of hydraulic fracturing in subterranean formations and more particularly to a method and means for optimizing fracture conductivity.
BACKGROUND OF THE INVENTION
Hydraulic fracturing is a primary tool for improving well productivity by placing or extending channels from the wellbore to the reservoir. This operation is essentially performed by hydraulically injecting a fracturing fluid into a wellbore penetrating a subterranean formation and forcing the fracturing fluid against the formation strata by pressure. The formation strata or rock is forced to crack and fracture. Proppant is placed in the fracture to prevent the fracture from closing and thus, provide improved flow of the recoverable fluid, i.e., oil, gas or water.
The proppant is thus used to hold the walls of the fracture apart to create a conductive path to the wellbore after pumping has stopped. Placing the appropriate proppant at the appropriate concentration to form a suitable proppant pack is thus critical to the success of a hydraulic fracture treatment.
Sand, resin-coated sand, and ceramic particles are the most commonly used proppants, though the literature, for instance U.S. Pat. No. 4,654,266, also mentions the used of walnut hull fragments coated with some bonding additives, metallic shots, or metal-coated beads—nearly spherical but having a passageways to improve their conductibility.
The proppant conductivity is affected principally by two parameters, the proppant pack width and the proppant pack permeability. To improve fracture proppant conductivity, typical approaches include high large diameter proppants. More generally, the most common approaches to improve proppant fracture performance include high strength proppants, large diameter proppants, high proppant concentrations in the proppant pack to obtain wider propped fractures, conductivity enhancing materials such as breakers, flow-back aides, fibers and other material that physically alter proppant packing, and use of non-damaging fracturing fluids such as gelled oils, viscoelastic surfactant based fluids, foamed fluids or emulsified fluids. It is also recognized that grain size, grain-size distribution, quantity of fines and impurities, roundness and sphericity and proppant density have an impact on fracture conductivity.
As mentioned above, the main function of the proppant is to keep the fracture open by overcoming the in-situ stress. Where the proppant strength is not high enough, the closure stress crushes the proppant, creating fines and reducing the conductivity. Sand is typically suitable for closure stresses of less than about 6000 psi (41 MPa), resin-coated sand may be used up to about 8000 psi (55 MPa). Intermediate-strength proppant typically consists of fused ceramic or sintered-bauxite and is used for closure stresses ranging between 5000 psi and 10000 psi (34 MPa to 69 MPa). High-strength proppant, consisting of sintered-bauxite with large amounts of corundum is used at closure stresses of up to about 14000 psi (96 MPa).
Permeability of a propped fracture increases as the square of the grain diameter. However, larger grains are often more susceptible to crush, have more placement problems and tend to be more easily invaded by fines. As the result, the average conductivity over the life of a well may be actually higher with smaller proppants.
In an effort to limit the flowback of particulate proppant materials placed into the formation, it was disclosed in U.S. Pat. No. 5,330,005 to add some fibrous material, mixed with the proppant material. It is believed that the fibers become concentrated into a mat or other three-dimensional framework, which holds the proppant thereby limiting its flowback. The fibers can be of glass, ceramic, carbon, natural or synthetic polymers or metal fibers. They have a length of typically about 2 to 30 mm and a diameter of between 10 and 100 micrometers. According to U.S. Pat. No. 5,908,073 the flowback is prevented through the use of fibrous bundles, made of from about 5 to about 200 individual fibers having lengths in the range of about 0.8 to about 2.5 mm and diameters in the range of about 10 to about 1000 micrometers. It has also known from U.S. Pat. No. 6,059,034 to add to blend the proppant material with a deformable particulate material. The deformable particles may have different shapes such as oval, cubic, bar-shaped, cylindrical, multi-faceted, irregular, tapered—but preferably with a maximum length-based ratio equal or less than 5, and are typically spherical plastic beads or composite particles comprising a non-deformable core and a deformable coating. In another embodiment claimed in U.S. Pat. No. 6,330,916, the particles may comprise ground or crushed materials such as nutshells, seed shells, fruit pits, and processed woods.
It should be emphasized that in all of the four above-mentioned U.S. Patents, the proppant itself is constituted of essentially spherical particles—most typically sand—intermingled with a material that may be elongated. This reflects the general understanding of this art that angular grains fail at lower closure stresses, producing more fines and thus reducing fracture conductivity. On the other hand, round and uniform-sized grains result in higher loads before failure since stresses are more evenly distributed.
Adding fibers or fiber-like products to the products may contribute to a reduction of the proppant flowback—and consequently to a better packing of the proppant in the fracture. Additionally, they contribute to prevent fine migrations and consequently, to prevent a reduction of the proppant conductivity but there is still a need for a new type of proppant that will lead to higher conductivity.
It is therefore an object of the present invention to provide a new type of proppant and improved methods of propping a fracture—or a part of a fracture like for instance the extremity of the fracture closer to the wellbore—whereby the proppant conductivity is improved and thus, the subsequent production of the well.
SUMMARY OF THE INVENTION
According to the present invention, a fracture is propped at least partially with a proppant consisting of an elongated particulate material, wherein individual particles of said particulate material have a shape with a length-basis aspect ratio greater than 5, and consists for instance of short metal wire segments for example.
Advantageously, the invention is compatible with techniques known to enhance proppant conductivity such as the use of conductivity enhancing materials (in particular the use of breakers) and the use of non-damaging fracturing based fluids such as gelled oils, viscoelastic surfactant based fluids, foamed fluids and emulsified fluids.
Another feature of this invention is that imaging the fracture geometry is substantially improved when these elongated particulate proppants are metallic or have some metal content. Tools such as resistivity tools, electromagnetic devices, and ultra long arrays of electrodes, can easily detect this proppant enabling fracture height, fracture width, and with processing, the propped fracture length to some extent can be determined.
REFERENCES:
patent: 3929191 (1975-12-01), Graham
patent: 4654266 (1987-03-01), Kachnik
patent: 4680230 (1987-07-01), Gibb et al.
patent: 5330005 (1994-07-01), Card
patent: 5582249 (1996-12-01), Caveny et al.
patent: 5908073 (1999-06-01), Nguyen
patent: RE36466 (1999-12-01), Nelson et al.
patent: 6059034 (2000-05-01), Rickards
patent: 6330916 (2001-12-01), Rickards
Veedburg, R.J., Roodhart, L.P., Davies, D.R. and Penny, G.S.: “Proppant back production During Hydraulic Fracturing: A New Failure Mechanism for Resin Coated Proppants,” paper SPE 27382, presented at the SPE International Symposium on Formation Damage Control, Lafayette, Louisiana, USA (Feb. 7-10, 1994).
Dewprashad, B.T., Kuhlman, R.D. and Nguyen, P.D.: “Rock mechanics Evaluation of Resin-Caoted Proppants for Screenless Completions,” paper SPE 50734, presented at the International symposium on Oilfield Chemistry, Houston
Boney Curtis L.
Lo Sho-Wei
Miller Matthew J.
Echols Brigitte L.
Mitchell Thomas O
Nava Robin
Schlumberger Technology Corporation
Walker Zakiya
LandOfFree
Conductive proppant and method of hydraulic fracturing using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Conductive proppant and method of hydraulic fracturing using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Conductive proppant and method of hydraulic fracturing using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3239583