Conductive foam core imaging member

Radiation imagery chemistry: process – composition – or product th – Transfer procedure between image and image layer – image... – Imagewise heating – element or image receiving layers...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S496000, C430S502000, C430S527000, C430S529000, C430S530000, C430S536000, C430S538000, C347S106000

Reexamination Certificate

active

06566033

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to imaging media. In a preferred form, it relates to supports for photographic, ink jet, thermal, and electrophotographic media.
BACKGROUND OF THE INVENTION
In order for a print imaging support to be widely accepted by the consumer for imaging applications, it has to meet requirements for preferred basis weight, caliper, stiffness, smoothness, gloss, whiteness, and opacity. Supports with properties outside the typical range for ‘imaging media’ suffer low consumer acceptance.
In addition to these fundamental requirements, imaging supports are also subject to other specific requirements depending upon the mode of image formation onto the support. For example, in the formation of photographic paper, it is important that the photographic paper be resistant to penetration by liquid processing chemicals failing which there is present a stain on the print border accompanied by a severe loss in image quality. In the formation of ‘photo-quality’ ink jet paper, it is important that the paper is readily wetted by ink and that it exhibits the ability to absorb high concentrations of ink and dry quickly. If the ink is not absorbed quickly, the elements block (stick) together when stacked against subsequent prints and exhibit smudging and uneven print density. For thermal media, it is important that the support contain an insulating layer in order to maximize the transfer of dye from the donor, which results in a higher color saturation.
It is important, therefore, for an imaging media to simultaneously satisfy several requirements. One commonly used technique in the art for simultaneously satisfying multiple requirements is through the use of composite structures comprising multiple layers wherein each of the layers, either individually or synergistically, serves distinct functions. For example, it is known that a conventional photographic paper comprises a cellulose paper base that has applied thereto a layer of polyolefin resin, typically polyethylene, on each side, which serves to provide waterproofing to the paper and also provides a smooth surface on which the photosensitive layers are formed. In another imaging material as in U.S. Pat. No. 5,866,282, biaxially oriented polyolefin sheets are extrusion laminated to cellulose paper to create a support for silver halide imaging layers. The biaxially oriented sheets described therein have a microvoided layer in combination with coextruded layers that contain white pigments such as TiO
2
above and below the microvoided layer. The composite imaging support structure described has been found to be more durable, sharper, and brighter than prior art photographic paper imaging supports that use cast melt extruded polyethylene layers coated on cellulose paper. In U.S. Pat. No. 5,851,651, porous coatings comprising inorganic pigments and anionic, organic binders are blade coated to cellulose paper to create ‘photo-quality’ ink jet paper.
In all of the above imaging supports, multiple operations are required to manufacture and assemble all of the individual layers. For example, photographic paper typically requires a paper-making operation followed by a polyethylene extrusion coating operation, or as disclosed in U.S. Pat. No. 5,866,282, a paper-making operation is followed by a lamination operation for which the laminates are made in yet another extrusion casting operation. There is a need for imaging supports that can be manufactured in a single in-line manufacturing process while still meeting the stringent features and quality requirements of imaging bases.
It is also well known in the art that traditional imaging bases consist of raw paper base. For example, in typical photographic paper as currently made, approximately 75% of the weight of the photographic paper comprises the raw paper base. Although raw paper base is typically a high modulus, low cost material, there exist significant environmental issues with the paper manufacturing process. There is a need for alternate raw materials and manufacturing processes that are more environmentally friendly. Additionally to minimize environmental impact, it is important to reduce the raw paper base content, where possible, without sacrificing the imaging base features that are valued by the customer, i.e., strength, stiffness, and surface properties of the imaging support.
An important corollary of the above is the ability to recycle photographic paper. Current photographic papers cannot be recycled because they are composites of polyethylene and raw paper base and, as such, cannot be recycled using polymer recovery processes or paper recovery processes. A photographic paper that comprises significantly higher contents of polymer lends itself to recycling using polymer recovery processes.
Existing composite color paper structures are typically subject to curl through the manufacturing, finishing, and processing operations. This curl is primarily due to internal stresses that are built into the various layers of the composite structure during manufacturing and drying operations, as well as during storage operations (core-set curl). Additionally, since the different layers of the composite structure exhibit different susceptibility to humidity, the curl of the imaging base changes as a function of the humidity of its immediate environment. There is a need for an imaging support that minimizes curl sensitivity as a function of humidity, or ideally, does not exhibit curl sensitivity.
The stringent and varied requirements of imaging media, therefore, demand a constant evolution of material and processing technology. One such technology known in the art as ‘polymer foams’ has previously found significant application in food and drink containers, packaging, furniture, and appliances. Polymer foams have also been referred to as cellular polymers, foamed plastic, or expanded plastic. Polymer foams are multiple phase systems comprising a solid polymer matrix that is continuous and a gas phase. For example, U.S. Pat. No. 4,832,775 discloses a composite foam/film structure which comprises a polystyrene foam substrate, oriented polypropylene film applied to at least one major surface of the polystyrene foam substrate, and an acrylic adhesive component securing the polypropylene film to said major surface of the polystyrene foam substrate. The foregoing composite foam/film structure can be shaped by conventional processes as thermoforming to provide numerous types of useful articles including cups, bowls, and plates, as well as cartons and containers that exhibit excellent levels of puncture, flex-crack, grease and abrasion resistance, moisture barrier properties, and resiliency.
Recently, a superior imaging support of high stiffness, excellent smoothness, high opacity, and excellent humidity curl resistance, comprising a closed cell foam core sheet and adhered thereto an upper and lower flange sheet has been disclosed in U.S. application Ser. No. 09/723,518, filed Nov. 28, 2001 by Dontula et al. Such an imaging support can be manufactured using a single in-line operation, and can be effectively recycled. However, such an imaging support can be subject to a high degree of static charge generation and accumulation during manufacturing, sensitizing, finishing and photofinishing, as compared to conventional resin-coated paper. The problem arises from the fact that unlike paper, which is inherently conductive because of its moisture and salt content, the foam based imaging support is hydrophobic and highly insulating, and, therefore, can readily become electrostatically charged. This static build-up happens because of friction with dielectric materials and triboelectrically chargeable transport means such as rollers during high speed conveyance of the support. An electrically charged support can result in static discharge through generation of sparks that poses fire hazards in the presence of flammable solvents at a typical coating site.
Conventional photographic resin-coated paper prints control static by the use of conductivity in the paper core in combination with

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Conductive foam core imaging member does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Conductive foam core imaging member, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Conductive foam core imaging member will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3034283

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.