Chemistry: electrical and wave energy – Processes and products
Patent
1992-08-17
1994-08-02
Niebling, John
Chemistry: electrical and wave energy
Processes and products
252514, 502101, C25B 300
Patent
active
053342925
ABSTRACT:
The present invention concerns an electronically conductive polymer film comprising colloidal catalytic particles homogeneously dispersed therein. The electronically conductive polymer is preferably polypyrrole although other conductive polymers, for example, polyaniline and polythiophene are also utilizable. The preferred catalytic particles are platinum although other catalytic particles such as RuO.sub.2, Ag, Pd, Ni, Cd, Co, Mo, Mn-oxide, Mn-sulfide, a molybdate, a tungstate, tungsten carbide, a thiospinel, Ru, Rh, Os, It, or a platinum palladium alloy (Pt/Pd).
The colloidal catalytic particles incorporated in the film of the present invention are less than 100 nanometers in size, preferably about 10 nm in size. In a most preferred composition, the polymer is polypyrrole and the catalytic particles are platinum.
The present invention also involves a method of producing an electronically conductive polymer film containing colloidal catalytic particles homogeneously dispersed therein. This method comprises: 1) preparing a colloidal suspension of catalytic particles in a solution comprising an electronically conductive polymer precursor. The catalytic particles may be those listed above, preferably platinum, and the electronically conductive polymer precursor is preferably pyrrole although aniline and thiophene or other monomers leading to conductive polymers may also be utilized analogously. An electronically conductive polymer film is then electrosynthesized, incorporating homogeneously dispersed colloidal catalytic particles.
In an important embodiment of the present invention, colloidal platinum particles are produced by citrate reduction of Pt (IV) to Pt.sup.0. Most preferably, this citrate reduction involves a sub-stoichiometric level of citrate as compared to the Pt (IV) level.
Another important aspect of the present invention is the utilization of the porous conductive polymeric matrix of the present invention which includes homogeneously dispersed colloidal catalytic particles to catalyze a reaction. Such a catalytic reaction involves subjection of reactants to this material in an electrochemically conductive or other context. Advantages of this type of catalysis involves ready retrieval of the catalytic particles, efficient utilization of expensive catalytic particles such as platinum, resistance of the particles to at least high molecular weight poisons which will not penetrate the polymeric matrix and, finally, the lack of saturation of catalytic activity in contrast to that seen with surface coated thin polymer layers.
REFERENCES:
patent: 4454169 (1984-06-01), Hinden et al.
patent: 4541905 (1985-09-01), Kuwana et al.
patent: 4568442 (1986-02-01), Goldsmith
patent: 4581116 (1986-04-01), Plowman et al.
patent: 4731310 (1988-03-01), Anderman et al.
patent: 4735875 (1988-04-01), Anderman et al.
patent: 4769115 (1988-09-01), Satoh et al.
patent: 4839322 (1989-06-01), Yodice
patent: 4920090 (1990-04-01), Ritter et al.
patent: 4954562 (1990-09-01), Anderson
patent: 4957943 (1990-09-01), McAllister et al.
Bose et al., "Efficient Electrocatalyst Assemblies for Proton and Oxygen Reduction: The Electrosynthesis and Characterization of Polypyrrole Films Containing Nanodispersed Platinum Particles," J. Electroanal. Chem., 333:235-256, 1992, published in Europe, month unavailable.
Bose et al., "Preparation, Voltammetric Characterization, and Use of a Composite Containing Chemically Synthesized Polypyrrole and a Carrier Polymer," J. Electrochemical Soc., 139(9):;L75-L76, 1992, published in USA, month unavailable.
Noufi, Rommel, "The Incorporation of Ruthenium Oxide in Polypyrrole Films and the Subsequent Photooxidation of Water at n-GaP Photoelectrode," J. Electrochem. Soc. 130:2126-2127, 1983, published in USA, month unavailable.
Liu, Hsue-Yang and Anson, Fred C., "Redox Mediation of Dioxygen Reduction within Nafion Electrode Coatings Containing Colloidal Platinum as Catalyst," J. Electroanal. Chem., 158:181-185, 1983, published in Europe, month unavailable.
Tourillon et al., "Electrochemical Inclusion of Metallic Clusters in Organic Conducting Polymers," J. Electroanal. Chem., 178:357-366, 1984, published in Europe, month unavailable.
Tourillon and Garnier, "Inclusion of Metallic Aggregates in Organic Conducting Polymers. A New Catalytic System, [Poly(3-methylthiophene)-Ag-Pt], for Proton Electrochemical Reduction," J. Phys. Chem., 88:5281-5285, 1984, published in USA, month unavailable.
Kao, Wen-Hong and Kuwana, Theodore, "Electrocatalysis by Electrodeposited Spherical Pt Microparticles Dispersed in a Polymeric Film Electrode," J. Am. Chem. Soc., 106:473-476, 1984, published in USA, month unavailable.
Weisshaar and Kuwana, "Electrodeposition of Metal Microparticles in a Polymer Film on a Glassy Carbon Electrode," J. Electroanal. Chem. 163:395-399, 1984, published in Europe, month available.
Daube et al., "Electrode-Confined Catalyst Systems for Use in Optical-to-Chemical Energy Conversion," Journal of Photochemistry, 29:71-88, 1985, published in Europe, month unavailable.
Bartak et al., "Electrodeposition and Characterization of Platinum Microparticles in Poly(4-vinylpyridine) Film Electrodes," Anal. Chem., 58:2756-2761, 1986, published in USA, month unavailable.
Vork et al., "Oxidation of Hydrogen at Platinum-Polypyrrole Electrodes," Electrochimica Acta., 31(12):1569-1575, 1986, published in Europe, month unavailable.
Chandler and Pletcher, "The Electrodeposition of Metals onto Polypyrrole Films From Aqueous Solution," Journal of Applied Electrochemistry, 16:62-68, 1986, published in Europe, month unavailable.
Vork et al., "Ohmic Resistance of Polypyrrole-Modified Electrodes with Incorporated Pt. Particles," Electrochimica Acta., 32(8):1187-1190, 1987, published in Europe, month unavailable.
Itaya et al., "Electrodeposition of Pt Ultramicroparticles in Nafion Films on Glassy Carbon Electrodes," J. Electroanal. Chem., 208:373-382, 1986, published in Europe, month unavailable.
Holdcroft and Funt, "Preparation and Electrocatalytic Properties of Conducting Films of Polypyrrole Containing Platinum Microparticulates," J. Electroanal. Chem., 240:89-103, 1988, published in Europe, month unavailable.
Kost and Bartak, "Electrodeposition of Platinum Microparticles into Polyaniline Films with Electrocatalytic Applications," Anal. Chem., 60:2379-2384, 1988, published in USA, month unavailable.
Vork and Barlndrecht, "The Reduction of Dioxygen at Polypyrrole-Modified Electrodes with Incorporated Pt Particles," Electrochimica Acta., 35(1):135-139, 1990, published in Europe, month unavailable.
Shimazu et al., "Enhancement of the Catalytic Activity of Pt Microparticles Dispersed in Nafion-coated Electrodes for the Oxidation of Methanol by RF-Plasma Treatment," J. Electroanal. Chem. 284:523-529, 1990, published in Europe, month unavailable.
Gholamian and Contractor, "Oxidation of Formic Acid at Platinum Microparticles Dispersed in a Polyaniline Matrix," J. Electroanal. Chem. 289:69-83, 1990, published in Europe, month unavailable.
Kawai et al., "Electrochemical Synthesis of Polypyrrole Films Containing TiO.sub.2 Powder Particles," J. Electrochem. Soc., 137(6):1793-1796, 1990, published in USA, month unavailable.
Yoneyama and Shoji, "Incorporation of WO.sub.3 into Polyprrole, and Electrochemical Properties of the Resulting Polymer Films," J. Electrochem. Soc., 137(12):3826-3830, 1990, published in USA, month unavailable.
Tian et al., "Electrochemical and XPS Studies on the Generation of Silver Clusters in Polyaniline Films," J. Electroanal. Chem. 308:357-363, 1991, published in Europe, month unavailable.
Leone et al., "Electrodeposition and Electrochemical Behavior of Palladium Particles at Polyaniline and Polypyrrole Films," J. Electrochem. Soc., 139(2):438-443, 1992, published in USA, month unavailable.
Beck et al., "Anodic Codeposition of Polypyrrole and Dispersed TiO.sub.2," Electrochimica Acta., 37(7):1265-1272, 1992, published in Europe, month unavailable.
Wessling, "Electrical Conductivity in Heterogeneous Polymer Systems, Further Experimental Evidence for a Phase Transition at the Crit
Bose Chalasani S. C.
Rajeshwar Krishnan
Board of Regents , The University of Texas System
Igoe Patrick J.
Niebling John
LandOfFree
Conducting polymer films containing nanodispersed catalyst parti does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Conducting polymer films containing nanodispersed catalyst parti, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Conducting polymer films containing nanodispersed catalyst parti will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-63299