Fluid sprinkling – spraying – and diffusing – Flow deflecting or rotation controlling means
Reexamination Certificate
2000-05-22
2002-11-19
Morris, Lesley D. (Department: 3752)
Fluid sprinkling, spraying, and diffusing
Flow deflecting or rotation controlling means
C239S483000, C239S487000, C239S501000, C222S144500, C222S334000
Reexamination Certificate
active
06481645
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to devices and methods for dispensing fluid, and more particularly to condiment dispensing nozzles and methods of dispensing condiments through nozzles.
BACKGROUND OF THE INVENTION
Despite numerous developments in condiment dispensing technology, several problems still exist with conventional condiment dispensers. Among the most familiar to manufacturers, eating establishments, and users alike are problems related to the dispense of condiment from a spout or nozzle. Regardless of the manner in which condiment is fed to the spout or nozzle (e.g., by hand pump, by powered pump, gravity fed, and the like), the potential for condiment splattering or spitting is virtually always present in conventional systems. Condiment discharged in this manner can land on countertops, walls, equipment, and on people near the dispenser, requiring cleanup and causing user irritation.
Also, conventional condiment dispensers often permit condiment to drip from the spout or nozzle between dispenses. Spout and nozzle designs that are suitable for preventing dripping of one condiment type are often incapable of doing so for other condiment types.
Another problem with conventional condiment dispensing nozzles and spouts is the undesirable buildup or leftover condiment remaining on the nozzle or spout after dispenser use. Buildup can occur around the edges of nozzles and spouts, and presents a very undesirable appearance especially when left to dry. An amount of condiment left dangling from a spout or nozzle after a dispense is also unappealing. In addition, condiment buildup and leftover condiment hanging from a nozzle or spout invites condiment spoilage and contamination, compromising the quality of the condiment and the food upon which the condiment is served.
An issue impacting the design of condiment spouts or nozzles is the ability to clean the nozzle or spout. While nozzle and spout designs exist for controlling splatter, drip, fluid buildup, or dangling fluid in other types of dispensers (e.g., for paint, adhesive, caulk, and the like), these designs are very often impractical for use in a condiment dispenser because they are difficult or impossible to clean sufficiently for use in food-grade equipment. Specifically, such nozzles and spouts often employ internal chambers and components that cannot be accessed for cleaning or require types of cleaning and cleaning fluids that cannot be used with food-grade equipment. Condiment dispensing equipment manufacturers are therefore significantly limited in their ability to employ nozzle and spout designs capable of controlling condiment splatter, drip, condiment buildup, and dangling condiment.
In addition to the above design considerations, condiment dispensing nozzles and spouts that are durable, easy to manufacture, and inexpensive are highly desirable for obvious reasons. In light of the problems and limitations of the prior art described above, a need exists for a condiment dispensing nozzle apparatus and method that controls condiment splatter and spitting, prevents condiment dripping between dispenses, presents a solution to the problems of condiment buildup and dangling condiment, and that provides an easily cleanable, durable, inexpensive, and easy to manufacture design meeting food-grade equipment standards. Each preferred embodiment of the present invention achieves one or more of these results.
SUMMARY OF THE INVENTION
The nozzle of the present invention employs a number of features addressing the problems shared by conventional condiment dispensing nozzles. The nozzle has an internal chamber, a condiment input port and a condiment discharge port preferably in fluid communication with and located at opposite ends of the internal chamber, and an extension downstream of the condiment discharge port for shielding against lateral condiment discharge from the nozzle and for diverting such discharge toward a trajectory more aligned with the condiment discharge port. Preferably, the internal chamber has a flow disrupter that induces turbulence in the condiment flow, agitates the condiment flow, or otherwise disrupts condiment flow in the internal chamber. Such effects in the flow act to reduce fluid pressure in the internal chamber to thereby enable greater control over condiment dispense. The flow disrupter can include a funnel-shaped end portion of the internal chamber adjacent to the condiment discharge port (and more preferably defining the condiment discharge port). This funnel-shaped end portion can have flat or curved walls, and preferably connects the side walls of the internal chamber with the condiment discharge port.
The internal chamber is preferably elongated and has a constant cross section along a majority of its length, but can have a changing cross section by virtue of tapered, concave or convex side walls. To reduce condiment pressure and flow speed entering the nozzle, the internal chamber preferably has a larger cross section than the spout or condiment supply port to which the nozzle is connected. Condiment therefore enters the internal chamber via the nozzle's input port and travels through the internal chamber until it reaches the funnel-shaped end portion. At this point, the condiment flow adjacent to the side walls of the internal chamber is preferably diverted toward the discharge port (and more preferably, in a radial direction toward the center of the internal chamber at the end portion thereof). By diverting the condiment flow in this manner, crossflow is generated at the end portion of the internal chamber, thereby generating turbulence that further reduces condiment pressure and force. The preferably turbulent condiment flow is thereafter constricted as it passes into and through the condiment discharge port.
The condiment discharge port can be one aperture at the end portion of the internal chamber or can be a group of apertures in this same location. Preferably, the number and size of the apertures are selected based upon the type of condiment to be dispensed through the nozzle. By selecting the type of condiment discharge port in this manner, undesirable drips between condiment dispenses are avoided. Specifically, the viscosity of the condiment in combination with the cross-sectional shear exerted by the converging flow upon condiment at the end portion of the internal chamber exceeds the force exerted by the weight of the condiment at the discharge port. Condiment is thereby held from passing through the aperture(s) of the condiment discharge port between dispenses.
The extension of the nozzle preferably encircles or otherwise surrounds the condiment discharge port. Preferably, the extension is in the form of a skirt made of one or more walls integral with or connected to the nozzle body around the condiment discharge port. The extension defines a discharge recess of the nozzle. The discharge recess preferably has a constant cross section, but can be tapered toward or away from the condiment discharge port as desired (provided, however, that the discharge of condiment is unobstructed and that lateral discharge is properly diverted as mentioned above).
Upon exiting the condiment discharge nozzle, at least a portion of the condiment flow may exit laterally due to turbulent condiment flow, lateral force exerted upon the condiment by the upstream flow-diverting end portion walls in the internal chamber, air in the condiment, and the like. This flow is diverted by the extension to a trajectory more aligned with flow exiting straight from the condiment discharge port. In this manner, the present invention helps to prevent splattering on the user and surroundings even in the event that air exits the nozzle with the condiment.
The extension of the nozzle serves another purpose related to unsightly condiment buildup and excess condiment hanging from the condiment discharge port. In the event that such condiment remains after a dispense, the extension acts as a shroud to hide the condiment from view, to at least partially enclose the condiment from the surrounding
Jersey Steven T.
Taylor-McCune Christopher J.
Hwu Davis
Michael & Best & Friedrich LLP
Morris Lesley D.
Shurflo Pump Mfg. Company, Inc.
LandOfFree
Condiment dispensing nozzle apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Condiment dispensing nozzle apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Condiment dispensing nozzle apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2962397