Animal husbandry – Avian egg treatment or production
Reexamination Certificate
1999-12-22
2001-06-12
Jordan, Charles T. (Department: 3644)
Animal husbandry
Avian egg treatment or production
Reexamination Certificate
active
06244214
ABSTRACT:
FIELD OF THE INVENTION
The present invention concerns methods and apparatus for the injection of eggs, particularly live embryonated bird eggs.
BACKGROUND OF THE INVENTION
Injection of substances into avian eggs is employed for many reasons, including to decrease post-hatch mortality rates, increase the potential growth rates or eventual size of the resulting chicken, and even to influence the gender determination of the embryo. Similarly, viruses have been injected into live eggs to produce viruses for use in vaccines.
Examples of substances which have been introduced into embryonated poultry eggs via in ovo injection include live culture vaccines, antibiotics, vitamins, and competitive exclusion media (e.g., a live replicating organism). Specific examples of treatment substances are described in U.S. Pat. No. 4,458,630 to Sharma et al, and U.S. Pat. No. 5,028,421 to Fredericksen et al. See also U.S. Pat. No. 4,458,630 to Sharma et al., U.S. Pat. No. 4,681,063 to Hebrank, and U.S. Pat. No. 5,158,038 to Sheeks et al.
In using in ovo injection, the location of the injection will vary depending on the desired result and the injectable being used. U.S. Pat. No. 4,458,630 to Sharma describes injection into the region defined by either the amnion or the yolk sac. Published PCT application W
0
93/15185 describes injection of substances into the air cell of embryonated eggs; PCT application W
0
93/14629 describes injection into the muscle tissue of the embryo contained within the egg.
U.S. Pat. No. 5,136,979 to Paul describes a modular injection system for avian embryos. The system comprises a generally horizontally oriented tooling plate with an opening therethrough, an injector resting generally vertically in the opening in the tooling plate with a lower portion of the injector depending downwardly below the tooling plate and an upper portion of the injector resting at or above the tooling plate. Means are included for raising and lowering the tooling plate and the injector therewith so that when the plate is lowered and the lower portion of the resting injector strikes an egg to be injected, the resting injector stops while the tooling plate proceeds downwardly until the injector disengages from the tooling plate and is free to move in a translational direction independent of the tooling plate. When the tooling plate is raised it reengages the injector and carries it upwardly and away from the egg.
This apparatus described in Paul et al. has been used in the high-speed commercial injection of live bird eggs, and has gained wide acceptance in the industry. The success of this apparatus has made possible the in ovo injection of increasingly sophisticated, and expensive, materials, such as vaccines. The size and location of the internal compartments and structures of avian eggs are, however, inherently variable, and some eggs are occasionally injected in non-optimal sites. Increased injection accuracy is desirable to minimize mis-directed injections, in order to avoid wasting injectables and avoid ineffective injection. Achieving increased injection accuracy requires obtaining useful, real-time information from the interior of the egg during the injection process, which has not heretofore been achieved by prior automated in ovo injection methods and apparatus.
SUMMARY OF THE INVENTION
A first aspect of the present invention is a method of injecting a plurality of bird eggs. The method comprises: (a) orienting a plurality of avian eggs in a predetermined position; (b) forming an opening in the shell of each of the eggs; (c) extending an elongate delivery device through each of the openings and into the eggs, each of the delivery devices comprising a detector and an injection needle, with the injection needle having a lumen formed therein; (d) detecting with the detector information from the interior of each of the plurality of eggs; and (e) injecting a substance into each of the plurality of eggs through the lumen of said injection needle. The injection may be into any suitable location, including the amnion, allantois, embryo, yolk sac, albumen, etc.
The detected information can be used for a variety of purposes, including but not limited to adjusting the depth of penetration of the injection needle to more precisely control the location of the injection, stopping the motion of the injection needle to control the depth of injection, identifying the gender of the eggs for subsequent sorting of the eggs, and distinguishing viable from non-viable eggs so that non-viable eggs need not be injected and/or can be subsequently separated from the viable eggs. Further, the stage of embryonic development can be determined. For example, the air cell and the allantois becomes larger as the embryo gets older, with the air cell having different electrical properties than other compartments of the egg. Hence, the stage of embryonic development can be determined by measuring properties such as the size of the air cell with an electrical probe.
The method may further comprise the steps of: (f) withdrawing the delivery device from each of the eggs and then (g) repeating steps (a) through (e) with a second plurality of eggs to provide an expeditious, high-speed means for automatically injecting and concurrently detecting information from a large number of eggs.
A second aspect of the present invention is a method of precisely positioning a needle tip within an plurality of bird eggs for injecting a substance into or withdrawing a sample from the plurality of eggs. The method comprises (a) orienting a plurality of avian eggs in a predetermined position; (b) forming an opening in the shell of each of the eggs; (c) extending an elongate delivery device through each of the openings and into the eggs, each of the delivery devices comprising a detector and a needle, with the needle having a tip portion and a lumen formed therein, said lumen extending through the tip portion; (d) detecting the detector depth information from the interior of each of said plurality of eggs; and then (e) independently controlling the depth of penetration of each of the needles based on the corresponding needle depth information; whereby a substance can be injected or biological material withdrawn from a particular position of the needle tip portion within each of the plurality of eggs through the lumen of said needle.
A third aspect of the present invention is an apparatus for injecting a plurality of bird eggs with a substance, while also detecting useful information from the interior of the eggs injected. The apparatus includes an alignment assembly for orienting a plurality of bird eggs to be injected. A plurality of injectors are associated with the alignment assembly, which injectors are configured for injecting each of the plurality of bird eggs in a predetermined location. A detector is operatively associated with each of the injection needles for detecting information from the interior of each of the plurality of eggs.
A fourth aspect of the invention is an apparatus for positioning a needle tip for injecting a substance into or withdrawing biological material from a particular location in a plurality of bird eggs. The apparatus comprises an alignment assembly for orienting a plurality of bird eggs to be injected. A plurality of injectors is associated with the alignment assembly and configured for injecting each of the plurality of bird eggs in a predetermined location, each of the injectors including a needle having a lumen through which the substance is injected or the material is withdrawn. A location detector is connected to and operatively associated with each of said injection needles for detecting needle location information from the interior of said egg. A controller is operatively associated with each of the location detectors for independently controlling the depth of penetration of each of the needles.
The foregoing and other objects and aspects of the present invention are explained in detail in the drawings herein and the specification set forth below.
REFERENCES:
patent: 4458630 (1984-07-01), Sharma et a
Embrex Inc.
Jordan Charles T.
Myers Bigel & Sibley & Sajovec
Smith Kimberly
LandOfFree
Concurrent in ovo injection and detection method and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Concurrent in ovo injection and detection method and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Concurrent in ovo injection and detection method and apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2459685