Static structures (e.g. – buildings) – With synthetic resinous component – Foam
Reexamination Certificate
2000-06-30
2002-06-11
Friedman, Carl D. (Department: 3635)
Static structures (e.g., buildings)
With synthetic resinous component
Foam
C052S309110, C052S421000, C052S426000, C052S793110
Reexamination Certificate
active
06401413
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to an insulated concrete form wall building system and more particularly to a form provided by expanded polystyrene sidewalls between which channels are formed and into which concrete in slurry form is poured and thereby becomes a part of the permanent wall structure.
2. Description of the Prior Art
The use of insulated concrete form wall building systems has been known for several decades as a means of eliminating the use of metal or wooden forms for the onsite construction of concrete walls for buildings. Although the use of metal or wooden forms provides a reliable means for making wall structures, such use suffers from the disadvantage that the forms are cumbersome and awkward to use and they must be removed after the concrete is sufficiently hard to allow their removal so that they do not end up forming a part of the wall structure. Such activity is labor intensive and particularly results in a substantial amount of on site labor in positioning the forms for pouring of the concrete.
Currently, competitive insulated concrete form building systems employ the use of expanded polystyrene material and fall into two basic categories, block style and sheet style. Block style systems use a molded expanded polystyrene building block system which is stacked in a building block configuration to form the concrete walls. The block style systems are easy to use, but they require a substantial amount of on site labor to assemble. The blocks typically incorporate internal clips or brackets that are designed to strengthen the joints therebetween. One of the principal disadvantages of the block style systems is that they do not readily accommodate openings for windows or doors, which limits their practical use primarily to separate wall systems or simple structures such as garages.
The sheets style systems use two molded expanded polystyrene sheets, one on each side of the form. Typically, the sheets are held apart by system of clips or brackets that have to be assembled on the job site and is cumbersome and labor intensive. Various methods of sealing the joints between the sheet systems have been devised but again they are all labor intensive. None of the sheet systems incorporate features for easily placing windows or doors, again resulting in costly on site labor. Another major disadvantage that both competitive systems suffer from is that they do not support the concrete without additional bracing (external forms or shoring) in order to prevent the concrete from breaking through the forms when it is poured.
Although competitive insulated concrete form systems have many shortcomings, they are gaining acceptance in the industry because of the energy savings and comfort they bring to the building structure. The use of competitive systems have been sold on their energy saving merits alone. Also, building codes are requiring insulation on the basement and foundation walls. Thus, insulated concrete form systems have been experiencing particularly increased acceptance as systems for building basements and foundation walls even though they do not provide any savings, from a construction labor standpoint, over conventional construction methods. However, their acceptance by large contractors or developers is still fairly limited.
The present invention provides an insulated concrete form building system that significantly decreases the amount of on site labor required and provides for a system in which windows and doors are readily accommodated.
SUMMARY OF THE INVENTION
A first embodiment of the present invention provides an insulated concrete form wall building system having spaced apart elongated expanded polystyrene sidewalls, each having opposed inner surfaces that are formed with longitudinally spaced apart vertically oriented ribs that terminate in substantially flat surfaces to abut against one another to serve as a concrete wall form.
The spaced apart ribs define channels for receiving concrete poured therein. Preferably, the polystyrene sidewalls are formed by cutting a single sheet of expanded polystyrene into two generally equal portions. Preferably, the top and bottom edges of the sidewall ribs have top and bottom ends that are spaced apart from the sidewall edges to provide upper and lower concrete receiving areas between the sidewalls that are in communication with the channels between the ribs. To form windows and doorways, the ribs of the sidewalls have opposed interrupted portions for receiving spacer members that are placed between the sidewalls, which spacer members are in the shape of the desired window or doorway.
A second embodiment of the present invention provides an insulated concrete form wall building system having spaced apart elongated expanded polystyrene sidewalls with divisional members positioned between the sidewalls. Each divisional member comprises top and bottom surfaces and two flat sides, one of which is attached to one sidewall and the other of which is attached to the second sidewall. The divisional members are spaced apart longitudinally along the sidewalls such that channels are formed between divisional members. The top and bottom surfaces of the divisional members are spaced apart from the top and bottom edges of the sidewalls to provide upper and lower concrete receiving areas between the sidewalls that are in communication with the channels between the divisional members. To form windows and doorways, divisional members are cut and attached to the first sidewall such that a seat the shape of the desired window or door is created. A spacer is inserted into the seat and the second sidewall attached.
A plastic barrier may be laminated to the outside surface of one or both sidewalls of the present invention negating the need for a finish coat and providing a barrier to moisture, rodents and many insects. This is especially advantageous where forms are used in subgrade positions. Preferably, this plastic barrier is in the form of an ABS plastic sheet of a thickness of about {fraction (1/16)}″.
The foregoing and other advantages of the present invention will appear from the following description. In the description, reference is made to the accompanying drawings, which form a part of hereof, and in which they are shown by illustration, and not of limitation, a specific form in which the invention may be embodied. Such embodiments do not represent the full scope of the invention, but rather the invention may be employed in a variety of embodiments, and reference is made to the claims herein for interpreting the breadth of the invention.
REFERENCES:
patent: 1616977 (1927-02-01), Koivu
patent: 3552076 (1971-01-01), Gregori
patent: 4004774 (1977-01-01), Houston
patent: 4190999 (1980-03-01), Hampton
patent: 4671032 (1987-06-01), Reynolds
patent: 4924641 (1990-05-01), Gibbar, Jr.
patent: 5465542 (1995-11-01), Terry
patent: 5568710 (1996-10-01), Smith
patent: 5640817 (1997-06-01), Bos
patent: 5819489 (1998-10-01), McKinney
Friedman Carl D.
Pingel G. Brian
Thissell Jennifer I.
Urban Camille L.
LandOfFree
Concrete form wall building system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Concrete form wall building system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Concrete form wall building system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2905051