Static structures (e.g. – buildings) – Intersection of wall to floor – ceiling – roof – or another wall – Block type or modular panel type
Reexamination Certificate
1999-10-06
2001-05-01
Friedman, Carl D. (Department: 3635)
Static structures (e.g., buildings)
Intersection of wall to floor, ceiling, roof, or another wall
Block type or modular panel type
C052S223700, C052S223600, C052S223140, C052S223130, C052S795100
Reexamination Certificate
active
06223487
ABSTRACT:
FIELD OF THE INVENTION
This disclosure concerns an invention relating generally to construction of building foundations, and more specifically to construction of building foundations and walls using modular components.
BACKGROUND OF THE INVENTION
In current construction practice, foundations for buildings are commonly formed by digging a foundation hole, assembling forms within the hole to effectively form a mold, pouring concrete within the assembled forms, and then removing the forms when the concrete has set into a solid form. The foundation is then left standing in the foundation hole, which is backfilled around the exterior of the foundation. The remainder of the building is then constructed atop the poured foundation. As a result of this process, construction of a building is highly dependent on the proper completion of its foundation. This can lead to difficulties in areas wherein soil conditions delay or hinder the digging of the foundation hole, and wherein the climate is not agreeable to pouring of concrete owing to rain or freezing. Rain causes significant difficulties insofar as concrete mixing trucks must generally be driven on-site in order to pour the concrete within the forms, and muddy sites can make this effectively impossible; the heavy trucks can get stuck in the mud, preventing them from reaching the pouring location. Freezing causes difficulties because it interferes with the setting/curing of concrete, and it can effectively ruin freshly poured concrete.
Further difficulties with properly forming a foundation are inherent in the pouring process. Because foundation walls must be poured within vertically-oriented forms/molds, the concrete mix must be in a substantially fluid state if it is to readily flow within the forms to fill out all corners, prevent voids, etc. However, in order for the concrete mix to reach this degree of fluidity (i.e., a low “slump” value), a substantial amount of water must be used in the concrete mix. This results in weaker, lower-density concrete, with greater permeability to water after setting occurs. Further, a watery concrete mix results in longer concrete setting/curing times. This slows building construction because backfilling against a newly-poured foundation before it is fully set may cause the foundation walls to collapse, or may crack them to later allow water to enter the foundation.
SUMMARY OF THE INVENTION
The invention, which is defined by the claims set out at the end of this disclosure, is directed to wall modules made of concrete or other cementitious materials, and building walls made of such modules. To briefly summarize the invention, reference will be made to the accompanying drawings.
As illustrated in
FIG. 1
, building walls can be constructed of a series of wall modules situated end-to-end in the form of a vertical wall. Each module includes an internal passage, and a tensioning member (e.g., a cable or rod) is strung through the passages of adjacent modules, tensioned, and then anchored within the passages. This pulls the collective modules together to form a rigid wall, and also places each individual module in compression, thereby increasing its strength. Such tensioning can occur by anchoring the ends of the tensioning members at the opposing ends of the wall, and/or by applying an adhesive material within the passages which bonds the tensioning member to the passage walls after it is tensioned. A preferred method of applying the adhesive material is to provide the modules with bore holes which extend from the inner or outer wall surfaces to open upon the passages, thereby allowing cement, grout, or similar adhesives to be poured or pumped within the bore holes to fill the passages about the tensioning members. When the adhesive dries, the tensioning member will be fixed in tension within each module, placing the module in compression and increasing its strength.
Since it will generally be desirable to have the building wall be draft- and water-resistant—particularly if the wall is used in a building foundation—additional features can be incorporated to prevent the elements from entering. The abutting ends of the modules may be treated with tar, cement or other adhesives before placing them together so that the ends are effectively affixed, and/or the joints can be externally coated with paraffin, tar, or other sealants. The ends of the modules at the joints can be configured so as to provide a longer entry path for air or water, thereby deterring its entry; for example, the abutting module ends can be configured as in
FIG. 3
, wherein a protrusion extending along the end of one module is received within a recess in the adjacent module. The entry of water is further deterred by providing a vertical channel within the joint (as exemplified by the channels
1604
within the joint of
FIG. 3
) so that water entering the joint will encounter the channel, and will then flow downwardly to be received by a drainage system.
During their initial formation, the modules can incorporate a wide variety of features which would otherwise require additional installation steps later. As examples, the modules can include built-in insulation, furring strips, electrical boxes, sill plates, etc. By pre-forming the modules with these features off-site, significant time savings is achieved on-site because building walls will be close to finished form immediately after they are constructed.
The modular concrete foundation system noted above is believed to provide numerous significant advantages over standard poured concrete foundations.
First, it is believed to provide strength superior to that of poured concrete foundations. This is primarily believed to occur because the tensioning members exert a compressive force on the modules and increase their strength over that provided when they are in an uncompressed state.
Second, it is believed that foundations formed by the invention, while formed in modular sections, can actually provide greater resistance to water entry than “single-piece” poured foundations. Poured foundations are highly susceptible to cracking somewhere along their lengths, whereas the modules of the present invention are smaller and less susceptible to stress cracking. Further, the modules will alleviate stress by flexing at the joints between abutting modules. Provided these joints have been waterproofed by means of a sealant/adhesive (e.g., tar), water is unlikely to enter.
Third, by preforming modules in bulk and installing them on-site, installation of a foundation is made much less expensive and time-consuming than the prior method of installing forms, pouring concrete, and allowing it to cure before continuing construction. Poured foundations require that the entire foundation be poured in a short time period to avoid setting of concrete within the mixer and disparate setting times in the foundation, and it is difficult to precisely obtain desired dimensions across the entire foundation. By using smaller molds, as with the modules of the invention, concrete may be mixed in smaller batches and uniform dimensions are much more easily obtained. Further, the modules of the invention provide substantial time savings by allowing pre-installation of studs, furring strips, lintels, sill plates, insulating sections, etc. within the modules. In addition, since modules may be poured in moderate climates, climate-controlled warehouses, or other locations where rain and freezing does not interfere with proper concrete pouring and curing, inclement weather is no longer an obstacle to construction.
Fourth, significant advantages are obtained owing to the fact that the modules may be cast by horizontal pouring (i.e., pouring wherein both the modules and their molds are primarily oriented parallel to the ground), rather than by the vertical pouring used with standard foundations. When foundations are vertically poured between forms, it is difficult to obtain uniform and level height across the entire foundation. As noted above, uniform dimensions are easily obtained when modules are horizontally poured in molds. F
A Phi Dieu Tran
DeWitt Ross & Stevens S.C.
Fieschko, Esq. Craig A.
Friedman Carl D.
Innovative Foundations, LLC
LandOfFree
Concrete construction modules for building foundations and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Concrete construction modules for building foundations and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Concrete construction modules for building foundations and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2518308