Concealed weapons detection system

Communications: directive radio wave systems and devices (e.g. – Transmission through media other than air or free space

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S090000, C342S027000, C342S192000, C342S197000

Reexamination Certificate

active

06359582

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention (Technical Field)
The present invention relates to apparatuses and methods for remotely detecting concealed weapons.
2. Background Art
There are no known weapons detection systems on the market today that can detect a concealed weapon from a distance of more than three feet. Virtually every device in operation is an electromagnetic device that requires the use of a portal. An eddy current flows through the portal and when metallic objects create a change in the magnetic flux, it activates a warning signal. This type of system cannot discriminate between concealed weapons and other metallic objects such as belt buckles, jewelry, coins, watches, or calculators.
Millitech Corporation of South Deerfield, Mass., may be developing a passive millimeter system. The system apparently would require the use of a portal, a floor plate, a video camera and a cathode ray tube to view the area being searched. Millitech has claimed it was developing a 300 mm aperture camera for fixed entrance-way surveillance to demonstrate their technology. The company claims its passive millimeter wave imagers will not require the subject to be exposed to any man-made electromagnetic fields or other radiation from an imaging system.
Likewise, Demma et al. utilizes millimeter-wave efforts but has not been able to detect non-metallic objects successfully. They also have limited ranging, being effective only to 2 meters. Infrared technologies, covered extensive in Demma et al., have great difficulty penetrating layers of clothing. In addition, in warmer climates, a gun carried on the body will take on the same temperatures as the body, making infrared virtually useless.
The Raytheon Company of Portsmouth, R.I., bases its weapons detection system on low frequency electromagnetic radiation. Their concept is based on illuminating the subject with a low intensity electromagnetic pulse known as a Heaviside pulse and measuring the time decay of the reradiated energy from metal objects carried by the person. The intensity and the time decay of the secondary radiation can be characterized and the signatures identified as a gun or non-threatening metal objects.
Idaho National Engineering Laboratory uses technology based on passive sampling of the earth's magnetic field. Local aberrations in the magnetic field are produced by ferromagnetic objects such as guns and knives. In the gun detection system being developed by Idaho National Engineering Laboratory, the magnetic aberrations or anomalies were to be sensed and measured by magnetic gradiometers. They were planning to construct a scanner using a multiple magnetometer design that could be a standalone unit, much like an airport scanner system. The scanner would be triggered electronically by a threshold detector. Data would be collected simultaneously from all sensors in the system providing a top to bottom magnetic profile of the targeted person. Reasonable suspicion about the presence of a concealed weapon would be dictated by the location and magnitude of magnetic anomalies.
Other attempts to provide a useful weapons detection system (or solve some marginally related detection problem) include U.S. Pat. No. 5,552,705, entitled “Non-Obstrusive Weapon Detection System and Method for Discriminating Between a Concealed Weapon and Other metal Objects,” to Keller; U.S. Pat. No. 5,519,400, entitled “Phase Coded, Micro-Power Impulse Radar Motion Sensor,” to McEwan; U.S. Pat. No. 5,512,834, entitled “Homodyne IMpulse Radar Hidden Object Locator,” to McEwan; U.S. Pat. No. 5,457,394, entitled “Impulse Radar Studfinder,” to McEwan; U.S. Pat. No. 5,381,153, entitled “Portable FM-CW Radar Device with Frequency Conversion by First and Second Frequencies,” to Saito et al.; U.S. Pat. No. 5,365,237, entitled “Microwave Camera,” to Johnson et al.; U.S. Pat. No. 5,345,240, entitled “Handheld Obstacle Penetrating Motion Detecting Radar,” to Frazier; U.S. Pat. No. 5,337,053, entitled “Method and Apparatus for Classifying Targets,” to Dwyer; U.S. Pat. No. 5,334,981, entitled “Airborne Metal Detecting Radar,” to Smith et al.; U.S. Pat. No. 4,905,008, entitled “Radar Type Underground Searching Apparatus,” to Kawano et al.; U.S. Pat. No. 3,707, 672, entitled “Weapon Detector Utilizing the Pulsed Field Technique to Detect Weapons on the Basis of Weapons Thickness,” to Miller et al.; and Demma et al., entitled “Remote Concealed Weapon Detection by Electromagnetic Imaging Techniques.”
Miller and Keller employ magnetic field sensors and so will not detect guns made of non-magnetic materials such as aluminum, brass, and copper. McEwan '400 employs monodyne impulse radar and cannot discriminate between object types. McEwan '834 and '394 employ impulse radars to locate large objects behind dielectric media and do not attempt to identify objects detected. Saito et al. employs Doppler radar to determine existence and motion of an object, but not the nature of the object. Johnson et al. is essentially a microwave ultrasound imager and does not measure or examine backscatter. Frazier is a conventional moving target indicator (MTI) radar. Dwyer does analyze radar backscattering but does so with respect to unobstructed objects, not concealed ones. Smith et al. uses radar cross polarization scattering for camouflaged metal detection, but does not rely on spectral content. Kawano et al. is a simple radar system for seeking objects or pockets below ground.
The present invention solves the deficiencies of the prior art. It illuminates a subject with a low intensity short pulse radar. Objects made of metal or high dielectric constant non-conductive material are nearly all backscattered. If a handgun is present, a unique spectral signature is received. Signatures can be prestored or learned by a computer employing artificial intelligence techniques.
The invention has an operating distance of at least between four yards to 20 yards. The invention, in its portable, hand-held form, is useful by law enforcement agencies, correctional facilities, the military and private security companies in the United States and throughout the world. The door-mounted embodiment is useful by federal, state and local governments, as well as financial institutions, convenience stores and other retail businesses, airports, schools and owners of private office and apartment buildings. Each of these entities has a critical need for a low-cost, highly dependable weapons detection system. The Bureau of Alcohol, Tobacco and Firearms estimates there are between 60 million to 200 million firearms in the United States today. More than 65,000 people were killed by firearms in the United States between 1988 and 1992. In 1993, homicides were the second leading cause of job-related fatalities in the United States, following only highway accidents. In 1993, the Federal Bureau of Investigation reported there were 11,876 bank robberies in the United States, resulting in a loss of $39.3 million. There were almost 35,000 armed robberies to convenience stores in the United States, accounting for a $15.7 million loss. In addition, the National Education Association reports an estimated 100,000 students carry a gun to school. Gunshots now cause one in every four deaths among American teenagers. Other countries are facing similar problems. The present invention seeks to lower these appalling statistics.
SUMMARY OF THE INVENTION (DISCLOSURE OF THE INVENTION)
The present invention is directed to a weapons detection system. The preferred weapons detector comprises: a transmitter for producing an output of frequencies of a set of self-resonant frequencies of weaponry; an antenna directing the transmitter output toward locations potentially having weaponry and collecting backscattered signals; a receiver receiving the backscattered signals and operating over a range of the self-resonant frequencies; and a signal processor for detecting presence of a plurality of the self-resonant frequencies in the backscattered signals.
A range finder is preferably used for normalizing the backscatter

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Concealed weapons detection system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Concealed weapons detection system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Concealed weapons detection system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2857232

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.