Image analysis – Image enhancement or restoration – Focus measuring or adjusting
Reexamination Certificate
2007-04-10
2007-04-10
Patel, Kanjibhai (Department: 2624)
Image analysis
Image enhancement or restoration
Focus measuring or adjusting
C382S280000
Reexamination Certificate
active
10937192
ABSTRACT:
Image processing utilizing numerical calculation of fractional exponential powers of a diagonalizable numerical transform operator for use in an iterative or other larger computational environments. In one implementation, one or more selected precomputed fractional powers of the transform operator are stored in memory. Computation is simplified by associating precomputed powers of the numerical transform operator with the binary values of individual digits in a binary fraction representation of the fractional exponent. The numerical transform operator may be a discrete Fourier transform operator, discrete fractional Fourier transform operator, and the like. This numerical calculation is useful in correcting the focus of misfocused images, which may originate from optical processes involving light (for example, with a lens or lens system) or particle beams (for example, in electron microscopy or ion lithography).
REFERENCES:
patent: 3519331 (1970-07-01), Cutrona et al.
patent: 4189214 (1980-02-01), Matsui et al.
patent: 4572616 (1986-02-01), Kowel et al.
patent: 5016976 (1991-05-01), Horner et al.
patent: 5061046 (1991-10-01), Lee et al.
patent: 5323472 (1994-06-01), Falk
patent: 5416618 (1995-05-01), Juday
patent: 5426521 (1995-06-01), Chen et al.
patent: 5432336 (1995-07-01), Carangelo et al.
patent: 5544252 (1996-08-01), Iwaki et al.
patent: 5706139 (1998-01-01), Kelly
patent: 5815233 (1998-09-01), Morokawa et al.
patent: 5854710 (1998-12-01), Rao et al.
patent: 5859728 (1999-01-01), Colin et al.
patent: 5959776 (1999-09-01), Pasch
patent: 6011874 (2000-01-01), Gluckstad
patent: 6021005 (2000-02-01), Cathey, Jr. et al.
patent: 6091481 (2000-07-01), Mori
patent: 6229649 (2001-05-01), Woods et al.
patent: 6252908 (2001-06-01), Tore
patent: 6392740 (2002-05-01), Shiraishi et al.
patent: 6404553 (2002-06-01), Wootton et al.
patent: 6421163 (2002-07-01), Culver et al.
patent: 6505252 (2003-01-01), Nagasaka
Sumiyoshi Abe, et al., “An optical implementation for the estimation of the fractional-Fourier order”, Optics Communications 137 (May 1, 1997), 214-218.
N. I. Achieser, Theory of Approximation, Dover, New York, 1992. pp. 1-23 & 78-81.
Jun Amako, et al., “Kinoform using an electrically controlled birefringent liquid-crystal spatial light modulator”, Applied Optics, vol. 30, No. 32, Nov. 10, 1991, pp. 4622-4628.
V. Bargmann, “On a Hilbert Space of Analytical Functions and an Associated Integral Transform,” Comm. Pure Appl. Math, vol. 14, 1961, 187-214.
L. M. Bernardo, O. D. D. Soares, “Fractional Fourier Transforms and Imaging,” Journal of Optical Society of America, vol. 11, No. 10, Oct. 1994, pp. 2622-2625.
Philip M. Birch, et al., “Real-time optical aberration correction with a ferroelectric liquid-crystal spatial light modulator”, Applied Optics, vol. 37, No. 11, Apr. 10, 1998, pp. 2164-2169.
Y. Bitran, H. M. Ozaktas, D. Mendlovic, R.G.Dorsch, A. W. Lohmann, “Fractional Fourier Transform: Simulations and Experimental Results,” Applied Optics vol. 34 No. 8, Mar. 1995. pp. 1329-1332.
E.U. Condon, “Immersion of the Fourier Transform in a Continuous Group of Functional Transforms,” in Proceedings of the National Academy of Science, vol. 23, pp. 158-161, 1937.
P. J. Davis, Interpolation and Approximation, Dover, New York, 1975. pp. 24-55, 106-185, 328-340.
B. W. Dickinson and D. Steiglitz, “Eigenvectors and Functions of the Discrete Fourier Transform,” in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-30, No. 1, Feb. 1982.
R. Dorsch, “Fractional Fourier Transformer of Variable Order Based on a Modular Lens System,” in Applied Optics, vol. 34, No. 26, pp. 6016-6020, Sep. 1995.
M. Fatih Erden, et al., “Design of dynamically adjustable ananmorphic fractional Fourier transformer”, Optics Communications 136 (Mar. 1, 1996), pp. 52-60.
M. F. Erden, “Repeated Filtering in Consecutive Fractional Fourier Domains,” doctoral dissertation at Bilkent Univ., Aug. 18, 1997.
G. B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, Princeton, NJ, 1989. pp. 51-55, 223-224, 236-239, 193.
J. W. Goodman, Introduction to Fourier Optica, McGraw-Hill, New York, 1968. pp. 77-197.
E. Hecht, “Grin Systems”, Optics. Third Edition, Ch. 6, section 6.4, pp. 277-280, Addison-Wesley publishing, (c) 1998.
K. Iizuka, Engineering Optics, Second Edition, Springer-Verlag, 1987. pp. 238-311.
Sang-Il Jin, et al., “Generalized Vander Lugt Corrrelator with fractional Fourier transforms for optical pattern recognition systems”, Lasers and Electro-Optics, 1997, CLEO/Pacific Rim, Pacific Rim Conf. on. p. 311.
F. H. Kerr, “A Distributional Approach to Namlas' Fractional Fourier Transforms,” in Proceedings of the Royal Society of Edinburgh, vol. 108/A, pp. 133-143, 1983.
F. H. Kerr, “On Namias' Fractional Fourier Transforms,” in IMA J. of Applied Mathematics vol. 39, No. 2, pp. 159-175, 1987.
M. A. Kutay, M. F. Erden, H.M. Ozatkas, O. Arikan, C. Candan, O. Guleryuz, “Cost-effective Approx. of Linear Systems with Repeated and Multi-channel Filtering Configurations,” IEEE pp. 3433-3436, May 12, 1998.
M. A. Kutay, “Generalized Filtering Configurations with Applications in Digital and Optical Signal and Image Processing,” doctoral dissertation at Bilkent Univ. Feb. 24, 1999.
M. A. Kutay, M. F. Erden, H.M. Ozatkas, O. Arikan, C. Candan, O. Guleryuz, “Space-bandwidth-efficient Realizations of Linear Systems,” Optics Letters, vol. 23 No. 14, Jul. 15, 1998, pp. 1069-1071.
N. N. Lebedev, Special Functions and their Applications, Dover, New York, 1985. pp. 60-77.
L. Levi, Applied Optics, vol. 2 (Sec. 19.2), Wiley, New York, 1980.
Adolf W. Lohmann, “A fake zoom lens for fractional Fourier experiments”, Optics Communications 115 (Apr. 1, 1995) 437-443.
L. F. Ludwig, “General Thin-Lens Action on Spatial Intensity (Amplitude) Distribution Behaves as Non-Integer Powers of Fourier Transform,” Spatial Light Modulators and Applications Conference, South Lake Tahoe, 1988.
M. E. Marhic, “Roots of the Identity Operator and Optics,” Journal of Optical Society of America, vol. 12, No. 7, Jul. 1995. pp. 1448-1459.
V. Namias, “The Fractional Order Fourier Transform and its Application to Quantum Mechanics,” in J. of Institute of Mathematics and Applications, vol. 25, pp. 241-265, 1980.
H. M. Ozakas, “Digital Computation of the Fractional Fourier Transform,” IEEE Transactions on Signal Processing, vol. 44, No. 9, pp. 2141-2150, Sep. 1996.
H. M. Ozaktas, D. Mendlovic, “Every Fourier Optical System is Equivalent to Consecutive Fractional-Fourier-domain Filtering,” Applied Optics, vol. 35, No. 17, Jun. 1996. pp. 3167-3170.
H. M. Ozaktas, D. Mendlovic, “Fourier Transforms of Fractional Order and their Optical Interpretation,” Optics Communications, vol. 101, No. 3, 4 pp. 163-169.
H. M. Ozaktas, D. Mendlovic, “Fractional Fourier Transforms and their Optical Implementation I,” Journal of the Optical Society of America, A vol. 10, No. 9, pp. 1875-1881, Sep. 1993.
H. M. Ozaktas, D. Mendlovic, “Fractional Fourier Transforms and their Optical Implementation II,” Journal of the Optical Society of America, A vol. 10, No. 12, pp. 2522-2531, Dec. 1993.
H. M. Ozaktas, M. A. Kutay, O. Arikan, L. Onural, “Optimal filtering in Fractional Fourier Domains,” IEEE Transactions on Signal Processing, vol. 45, No. 5, pp. 1129-1143, May 1997.
H. M. Ozaktas, H. Ozaktas, M. A. Kutay, O. Arikan, M. F. Erden, “Solution and Cost Analysis of General Multi-channel and Multi-stage Filtering Circuits,” IEEE, Piscataway, N. J., pp. 481-484, Oct. 1998.
H. M. Ozaktas, H. Ozaktas, M. A. Kutay, O. Arikan, “The Fractional Fourier Domain Decomposition (FFDD),” Signal Processing, 1999. 4 pgs.
A. Papoulis, “Systems and Transfo
Lee Hong Degerman Kang & Schmadeka
Lotspeich Jeffrey
LandOfFree
Computing arbitrary fractional powers of a transform... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Computing arbitrary fractional powers of a transform..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computing arbitrary fractional powers of a transform... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3769735