Computerized repetitive-motion exercise logger and guide system

Exercise devices – Having specific electrical feature – Monitors exercise parameter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C482S004000

Reexamination Certificate

active

06669600

ABSTRACT:

CROSS-REFERENCES TO RELATED APPLICATIONS
None. No provisional application was filed.
BACKGROUND
1. Field of Invention
This invention relates to collecting athletic performance data, specifically to an improved logging and pacing system that generically works with most exercises.
2. Description of Prior Art
Prior to this invention it has been difficult to collect performance data of one's exercise regime without an extra person and tedious manual record-keeping. It is desirable to be able to quantify one's power and ability to do work, and monitor trends over time. This can be manually accomplished by a person with a clipboard writing down weights, and distances for each set plus times for each repetition in the set of a given weight routine. The trainer must then type it all into a computer and graph or analyze it there. For running, a person or persons with stop-watches is required. It is desirable to be able to represent such data visually in graphs in calculated units of work and power for individual exercise stations or for the entire workout session, but without all the manual work and tedium. It is desirable to have a simple, inexpensive approach that will generically work with most types of exercises.
Another important aspect has to do with improving one's ability to do work (used as a term of physics). It is desirable to design different exercise routines (different combinations and sequences of exercise stations) and compare the ability to do work using these different configurations. Some “traditional” techniques may under close scrutiny be determined to be ineffective or not optimally effective for a given individual.
For example, one may design an exercise routine that starts with working three exercise stations for upper-body development, and then do three exercise stations specifically for the back. The next day one may do three exercise stations for the abdomen and three exercise stations for the legs. Collect work and power metrics for all the exercise stations. Optionally, total metrics for the two workouts could be calculated. Next, one can modify this workout design so that the first day does three stations for the back and then three for the upper-body (reverse the order). Likewise, for the second day the order is reversed. How do the performance metrics differ? A change in order like this may significantly increase individual performance (as indicated by work and power statistics).
Another example would be to change the number of sets or repetitions or amount of weight for each set to help identify optimal configurations. Or monitor trends over a period of months for established routines. Or refine tapering techniques so that maximal power is available for a crucial competitive event. Currently even the most disciplined record-keeping athletes must largely depend on subjective opinion as to what constitutes their best workout regiment, because they do not do the math and it takes a lot of time to create useful graphs of data. The time would be spent in the record-keeping, and data entry, rather than in the design of better workouts.
It is true the individual athletes can collect some of this data manually themselves, by writing down numbers after a weight-lifting set, or recording a time from a stop-watch a runner carries. This detracts from the athletes concentration and has the same limitations for analysis of requiring mathematics performed to compute work and power metrics, and requiring manual input into a computer. Thus the typical current process supports the analysis of an individual athlete's performance typically only with gross granularity.
A number of computerized, automating approaches have been suggested. Many approaches use transmitters and receivers, such as U.S. Pat. No. 5,511,045 to Sasaki, Apr. 3, 1996 or U.S. Pat. No. 5,737,280 to Kokubo, Apr. 7, 1998. This approach has limited flexibility and is complicated to implement. Typically a network of transmitters or terminals must exist (complicated) and it is hard to apply the approach generically to any given exercise station (less flexible)—the designs tend to be specific for one task, such as running.
None of the approaches embed small, simple, cheap, magnets along the running track to work with the same generic logging system that is used for other types of exercise stations.
Many approaches require integrating circuitry into the exercise equipment, such as U.S. Pat. No. 6,027,429 to Daniels on Feb. 22, 2000 which provides resistive force feedback to the user. This approach also limits flexibility because the exercise equipment must be modified.
U.S. Pat. No. 6,050,924 to Shea on Apr. 18, 2000 uses a network of terminals to provide information to a user about previous workouts. Once again, this limits flexibility because the device takes time to setup the network or make changes to it, plus it is more complicated and more expensive than having one unit that moves from station-to-station with you.
Another approach, taken by U.S. Pat. No. 5,947,869 to Shea Sep. 7, 1999 allows for a computerized exercise station to accept customized programs for an individual, but once again this approach only works with exercise equipment especially designed for it (limited flexibility).
Heartbeat, respiration, and other physiological data are collected in other approaches such as by U.S. Pat. No. 4,867,442 to Matthews on Sep. 19, 1989 but this does not focus on work and power metrics of the individual in a generic way. The focus here is on the biological stress to the human body, rather than the quantity of external work and power manifested by the body. The additional wires and sensors attaching to the athlete may be a distraction.
In general, the requirements for collecting work and power data for generic exercise repetitions had not currently been met. This requires a stand-alone unit with a sensitive sensor for detecting repetitions at several feet distance, plus a clock mechanism for recording time-stamps. The data must easily be uploaded to a host computer for analysis.
Numerous approaches to pacing systems also exist. Typically these are not dynamic. They set a pace for the user based on a time clock, and do not include input from the user. For example, an audio tone may be generated every three seconds, but the device does not know when the user has completed the desired repetitions. The device cannot tell the user he/she needs to speed up or slow down.
Or, they may have input from the user, such as U.S. Pat. No. 5,490,816 to Sakumoto on Feb. 13, 1996 or U.S. Pat. No. 4,334,190 to Sochaczevski on Jan. 8, 1982 These are based on the approximated length of stride, rather than absolute marked distances such as segments around a running track (the latter patent also uses an inertial mechanical sensor rather than an electronic one). Greater accuracy is obtained by using the absolute marked distances.
Some approaches use a sensor to dynamically collect data, but they require additional devices to interface to the exercise equipment. An example of this would be U.S. Pat. No. 4,780,085 to Malone Oct. 25, 1988 It is used only for swimming, and required a special diving platform to trigger the start of its sensor input. Once again, a generic approach should not require special adapters or modifications to the exercise equipment.
Another limitation of many existing sensor approaches is their range. Many use sensors that have a range of a few inches or less (such as reed switches). To generically handle exercise stations one needs a sensor range of several feet.
Other approaches add features that substantially increase cost and complexity but add little or nothing to the collection of the basic work and power performance data. For example, U.S. Pat. No. 5,857,939 by Kaufman on Jan. 12, 1999 records a count of iterations based on spoken words. This requires a lot of memory, and expensive voice-recognition circuitry, when a modest sensor circuit will do the same thing.
The computerized performance monitor of U.S. Pat. No. 4,907,795 to Shaw, et al on Apr. 4, 1989 requires electromechan

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Computerized repetitive-motion exercise logger and guide system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Computerized repetitive-motion exercise logger and guide system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computerized repetitive-motion exercise logger and guide system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3119825

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.