Computerized exercise system and method

Exercise devices – Having specific electrical feature – Monitors exercise parameter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C482S004000, C482S009000, C482S101000

Reexamination Certificate

active

06280361

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a computer controlled electromechanical exercise system, and more particularly, to a portable lightweight, and easily reconfigured exercise system for use on earth with normal gravity and in a gravity free environment, i.e., in a spacecraft application.
Even further, the present invention relates to a computer controlled exercise system developed to support isometric, isokinetic, and isotonic exercise modes of operation and easily reconfigured for flexibly providing a multitude of exercising options to the user to support complex, multi-axis exercise trajectories involving up to 6 degrees of freedom motion.
Further, the present invention relates to an exercise system comprising one or more active portable exercise modules serving to generate forces otherwise not existing in a gravity-free environment. The system includes associated control electronics, and an overall operational exercise program.
The present invention further relates to an exercise system serving as an exercise dynamometer in that the exercise forces applied by a user against the exercise system are monitored and recorded for subsequent evaluation.
Additionally, the present invention relates to an exercise system provided with means to tune the particular exercise or level of effort to the physical condition of a user in real time and allows the user to perform a wide range of exercises, both cardiovascular and resistive which are customized to the user's needs.
Even further, the present invention is directed to an exercise system providing the user with both local or remote programming capability, including centralized supervision, i.e., networking of exercise machines, and networked competition, i.e., the interconnection of exercise machines in a desired configuration, in order that geographically displaced users may compete against each other.
The exercise system of the present invention even further relates to a virtual reality exercise machine to increase the motivation and enjoyment of the user to perform exercises.
PRIOR ART
Conventional exercise machines typically operate by taking advantage of earth's gravitational field to generate a force against which a user must perform a given motion or exercise. To remove the dependency of the exercise machine on the gravitational field, various resistive exercise devices and systems have been developed, and described in, for example, U.S. Pat. Nos. 4,174,832; 4,253,663; and, 5,486,149, which are directed to resistive exercise devices incorporating a pulley or reel mounted flexible cord. In each device, a user performs exercise by displacing, or extending, the stored cable against a resistive force. These Patents fail, however, to teach a flexible control system whereby either complex or even simple exercise trajectories can be either preprogrammed or controlled.
A three-axis passive motion microprocessor controlled exerciser, described in U.S. Pat. No. 5,211,161, is adapted to move the patient's foot in dorsal-planar, valgus-varus and abduction-adduction modes. A microprocessor monitors the motions of the structural elements in the exerciser and controls both the position and torque of three motors responsible for various motions in the three-axes in synchronization with each other. The bulky apparatus described in the U.S. Pat. No. 5,211,161 imparts a plurality of nominal displacements to the patient's foot for therapeutic purposes, and thus, the device is limited to its special designed purpose, and cannot be considered nor adaptable as a flexible, all-purpose exercise device and dynamometer.
U.S. Pat. No. 5,577,981 is directed to a computer controlled virtual reality exercise machine. For operation, the device requires a plurality of heavy motor actuated booms, a treadmill, and a specially adapted booth. These substantial structural requirements prevent use of this system in any application requiring portable, low weight, and easily reconfigured exercise equipment. Disadvantageously, the boom actuating motors, pulleys, and associated electronics are unnecessarily complicated; and the boom actuated handles, against which the user exerts exercise forces, are limited in their range and complexity of motion.
U.S. Pat. No. 4,934,694 is directed to a computer-controlled exercise system for optimizing the exercise of skeletal muscles under program control which requires a substantive stationary structure to support its operation which limits applications of the exercise system in an environment requiring portability, low weight of the system and flexibility. Further, the exercise system fails to provide a user with the capability of complex exercise trajectories.
In summary, these prior exercise systems fail to provide the flexibility, wide range of exercise trajectories, ease of reconfigurability, portability, programmability and simplicity needed in space and other applications.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a lightweight, portable, flexible and easily reconfigurable computerized exercise system capable of providing a multitude of exercising options to a user adapted for use in a gravity environment as well as in gravity free environments.
It is another object of the present invention to provide an exercise system comprising one or more portable active exercise modules, associated control electronics, and an overall operational control architecture for controlling and coordination of the combination of the exercise modules to support complex, multi-axis exercise trajectories involving up to 6 degrees of freedom motion.
It is a further object of the present invention to provide a computerized exercise system capable of being tuned to the physical condition of a user in real time.
It is still a further object of the present invention to provide a computerized exercise system capable of being networked with geographically displaced exercise machines for centralized supervision thereof from a centralized location to allow a network competition between geographically displaced users.
It is yet a further object of the present invention to provide a computerized exercise system which serves as an exercise dynamometer in which the exercise forces applied by a user against the exercise system are monitored and recorded for subsequent evaluation.
It is still another object of the present invention to provide a computerized exercise system including one or more active portable exercise modules which allow for simulating resistive forces against which a user exercises is easily repositionable for reconfiguration of the overall system, where each exercise module incorporates a gear drive reduction system mated to a motor additionally functioning as an electromagnetic brake in passive use.
In accordance with the teachings of the present invention, a computerized exercise system comprises one or more compact active resistive exercise modules, control electronics associated therewith, and an operational control architecture that provides overall control of the exercise system.
Each exercise module is secured to a reference base at a predetermined location. The exercise module includes a displaceable cable extending therefrom and coupled to one or more exercise members (manipulandum) which a user of the exercise system moves during the performance of an exercising routine. Each exercise module further includes a rotatable reel mounted therewithin for reversibly winding the displaceable cable thereon. A tension actuating unit (such as a DC brushless motor mated with Harmonic Drive unit) mounted within the exercise module housing controls the rotatable reel to generate a required tension force in the cable and to displace the cable a required distance. The exercise module is provided with a displacement sensing unit for monitoring in real time the displacement of the cable, and further is provided with a force sensing unit operating in real time to monitor the tension forces in the cable.
By generating required tensions in the cables coupled to the m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Computerized exercise system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Computerized exercise system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computerized exercise system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2483654

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.