Computer system

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S689000, C439S581000, C312S223100, C333S123000, C333S160000

Reexamination Certificate

active

06583989

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to computer systems and more particularly to computer systems which include a plurality of compute elements which are slidably disposed within a rack cabinet.
Computers, or compute elements, are typically connected to a communication network, such as the internet, so as to enable information (i.e., data or files) to be passed from one computer to another computer. When large amounts of information are shared by multiple computers, a network server (also referred to in the art simply as “a server”) is connected to the communication network to provide information to numerous network clients (also referred to in the art simply as “clients”).
A network server enables many individual clients to access information that is stored within the single server. For example, servers are commonly used to host web sites which can be accessed by many individual computers through the internet.
The establishment of a client-server computer network creates numerous advantages. For example, a client-server relationship enables multiple clients to concurrently access information stored on one or more servers. In addition, a client-server relationship enables information to be added or modified to the one or more servers rather than to each of the individual clients, thereby reducing the overall cost to maintain the system.
Pluralities of individual servers are often disposed within a rack cabinet in a stacked relationship to create a computer system, such a computer system being commonly referred to as a rack system in the art. Rack cabinets are generally rectangular in shape and are constructed to enable individual compute elements, such as computer servers or disc array subsystems, to be slidably disposed therewithin. For greater computing capabilities, multiple rack systems are often connected together by a network, such as a local area network (LAN).
Rack cabinets are typically constructed to house components which comply with industry NEMA standards. Specifically, rack cabinets are typically constructed to house components which have a width which complies with industry NEMA standards (i.e., 19 inches) and which have a height which complies with industry NEMA standards (i.e., a multiple of rack units or “U” where 1-U equals 1.75 inches).
An individual server which is constructed to be disposed within a rack cabinet typically includes a rectangular chassis, or housing, constructed of a hard and durable material. One or more brackets are commonly mounted on the exterior of the chassis and are adapted to engage associated brackets mounted on the rack cabinet, thereby enabling the individual server to be slidably disposed within the rack cabinet. It should be noted that, due to the relatively heavy weight of conventional servers, ball bearing brackets are typically used to slidably dispose individual servers within a rack cabinet. As can be appreciated, ball bearing brackets are typically heavy and costly to a manufacture and, accordingly, are not desirable for use in slidably disposing individual servers within a rack cabinet.
An individual server which is constructed to be disposed within a rack cabinet also typically includes, inter alia, a plurality of removable power supplies disposed in either the front or the rear of the chassis, a plurality of removable hard drives disposed in the front control panel of the chassis, a 3.5 inch diskette drive disposed in the front control panel of the chassis and/or a CD-ROM disposed in the front control panel of the chassis.
It should be noted that the implementation of the aforementioned internal devices into each server in the computer system introduces numerous disadvantages.
For example, as a first disadvantage, the weight of each server is significantly increased by disposing all of the aforementioned internal devices into its associated chassis. As a consequence, it has been found that the considerable weight of traditional servers renders them difficult to handle. In fact, multiple technicians are often needed to service and/or replace a single computer server.
As a second disadvantage, the total cost of the computer system is considerably increased by disposing all of the aforementioned internal devices into each server located within the rack cabinet. As can be appreciated, redundantly disposing the same internal devices into each computer server in the computer system creates a undesirable amount of waste.
As a third disadvantage, the density of the computer system is considerably reduced by disposing all of the aforementioned internal devices into each server located within the rack cabinet. Specifically, because a large portion of the chassis of each server requires designation for the aforementioned internal devices, there remains less free space in the chassis which can be designated for processors and associated circuitry. As a consequence, traditional 2-U servers typically comprise, at most, a pair of microprocessors.
An individual server which is constructed to be disposed within a rack cabinet also typically includes various fundamental connectors mounted on the rear panel of the chassis for interconnecting the server to other devices. Specifically, a server typically includes one or more power connectors which connect the server to a power source. Each server also typically includes one or more system management connectors which interconnect the various components housed within the one or more rack cabinets which constitute the computer system. Each server further typically includes one or more network connectors which connect the server to a network, such as a local area network (LAN) or the internet. Each server additionally typically includes one or more storage connectors which connect the server to at least one storage device. Each server also typically includes one or more input/output (I/O) connectors which connect the server to I/O devices, such as a keyboard, mouse and monitor.
In use, the fundamental connectors for each server are connected to external devices using conventional wiring or cables. Specifically; the one or more power connectors for the server are typically connected to the power source using a standard power cord, or cable. The one or more system management connectors for the server are typically connected to the other components which constitute the computer system using standard LAN cables. The one or more network connectors are typically connected to the designated network using standard LAN cables. The one or more storage connectors are typically connected to one or more storage devices using fibre channel cables or small computer systems interface (SCSI). The one or more I/O connectors are typically connected to associated I/O devices using standard I/O cables. As can be appreciated, connecting each server of.the computer system to the various aforementioned external devices necessitates a considerable number of external wiring interconnections which, in turn, introduces numerous disadvantages.
Specifically, as a first disadvantage, the considerable number of external wiring interconnections which are required between each computer server and the various aforementioned external devices can create a significant level of confusion for technicians who are installing, servicing and/or replacing individual servers in the computer system. In fact, it has been found that technicians who are required to disconnect an individual server from the computer system often mistakingly disconnect the wrong server, which is highly undesirable.
As a second disadvantage, the external wiring interconnections which need to be made between each computer server and the various aformentioned external devices requires that a technician servicing the computer system walk behind the computer system to access the various connectors. As a result, an adequately sized path is required behind the computer system, thereby increasing the total size of the immediate area required to house such a system. Increasing the total size of the immediate area required to house such a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Computer system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Computer system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computer system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3163643

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.