Computer network telephony

Data processing: speech signal processing – linguistics – language – Speech signal processing – Application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C704S270000, C704S270100, C704S251000, C379S273000, C379S142010, C379S142070, C379S902000, C455S445000, C370S351000

Reexamination Certificate

active

06434528

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to computer network telephony, In particular it relates to making connections between network telephones on a computer network.
BACKGROUND OF INVENTION
Although originally intended for the transmission of computer data, more recently computer networks and specifically the INTERNET has been exploited to provide real time telephony communications. The primary attraction of the INTERNET for telephony communications is the low charge compared with conventional telephony or the plain old telephone system (POTS). Many INTERNET users have a dial-up connection to an access provider over a local telephone line, and therefore such users pay only local telephone charges when logged on. Some access providers charge a monthly description, whilst others charge on the basis of connection time (some may do both). However, there is generally no charge associated with actual data transfer over the network. As a result, the effective cost of an international call over the INTERNET may be no more than that of a local call of the same duration to the access provider. In addition, the fully digital nature of the INTERNET may potentially offer a richer functionality (e.g. in terms of conference calling) than conventional telephone networks. INTERNET phones are surveyed in the article “Dial 1-800-Internet” in Byte Magazine, February 1996, pages 83-88 and in the article “Nattering On”, in New Scientist, Mar. 2, 1996, pages 38-40.
The transmission of voice signals over a packet network is described for example in “Using Local Area Networks for Carrying Online Voice” by D. Cohen, pages 13-21, in “Voice Transmission over an Ethernet Backbone” by P. Ravasio, R. Marcogliese, and R. Novarese, pages 39-66, both in “Local Computer Networks” (edited by P. Ravasio, G. Hopkins, and N. Naffah; North Holland, 1982) and also in GB 2283252. The basic principles of such a scheme are that a first computer digitally samples a voice input signal at a regular rate (e.g. 8 kHz). A number of samples are then assembled into a data packet for transmission over the network to a second terminal, which then feeds the samples to a loudspeaker or equivalent device for play out, again at a constant 8 kHz rate. Voice transmission over the INTERNET is substantially similar to transmission over a LAN (which may indeed provide part of the INTERNET transmission path), but there tends to be less spare bandwidth available on the INTERNET. As a result, INTERNET phones normally compress the voice signal at the transmitting end, and then decompress it at the receiving end.
Voice directories for POTS are known. WlLDFIRETMAdvanced Voice-Controlled Electronic Assistant has various capabilities, including acting as a “voice dialer”—wherein the user can speak a telephone number they wish to call into a phone which has a connection to the WlLDFIRE™ system—the WILDFIRE™ system can perform a transfer to the telephone number requested. Users can also set up to 150 “nicknames” for commonly used numbers such as “work”, “home”, “bill”, etc. and just ask the WILDFIRE™ system to “call Bill”, for example. The WILDFIRE™ system is not an IP (INTERNET Protocol) telephony based product and does not allow for very large numbers of names in a directory. Furthermore it is an internal company directory which uses a private branch switch to make connections.
Another POTS voice directory, VIAVOICE™ Directory Dialer, prompts callers for a person's name, requests further information when duplicate names are encountered and transfers the call to the number which equates with that person's name. It currently has support for up to 250,000 names. It is not an IP telephony based product and uses a private branch switch based in the company or internal telephone network.
An ip address is a unique identification and uses several bytes of memory, more memory to store than a nickname or abbreviated address. This can cause a problem with thin devices with reduced memory capacity. This problem will become more prominent as the number of telephony addresses in the world rises at the current rate. Furthermore in a few years time the number of unique address will be reaching a limit and a new unique format may have to be used using far more numbers and memory. This is not such a problem for POTS telephones which may use local telephone numbers or extensions to request connections from switches.
INTERNET telephony uses a transient network of computers to send discrete packets of data between destinations. Unlike POTS telephones, the route the voice data take may vary over the course of a conversation, it is necessary that the network phones themselves have the full address information of the destination available.
DISCLOSURE OF THE INVENTION
According to one aspect of the invention there is provided a method of connecting computer network ip telephones: opening a voice channel from one of said ip phones to a speech recognition server; determining a name from a speech input sent over the voice channel to the speech recognition server; determining an ip address from an ip address database corresponding to the determined name; opening a data channel from the database and transmitting the ip address to one or other of said telephones; and routing logic on said one or other ip phones using the ip address to establish a connection with the other ip phone.
This allows the ip phones to access remote resources of speech recognition and a large database thereby taking advantage of more powerful resources than would be available locally. This is particularly advantageous for pervasive computing devices which have limited resources.
The network phone differs from a normal phone in the following manner: it only has a single multipurpose button, has no numeric identification on it, and plugs into a data network rather than a telephone line connected to a switch. It may be a virtual device on a screen rather than an actual physical device. The device has the capability to set up a voice stream (“telephone call”) to another similar device (virtual or physical) on the same data network. The device receives the address (not number) of the other device from a directory dialer, to which it will set up a connection whenever the single multipurpose button is pressed, so that the caller can declare the name (not number) of the person to whom a call is required and the directory dialer can supply the address to which a connection is to be made. Hence the addressing logic resides in the directory dialer, but the “switching logic” lies in the phone itself, which is to say that whereas a telephone connected to a switch always makes a connection through the switch, the Numberless LAN phone only makes a connection of its own initiative through the data network. This is already achieved by INTERNET phones (e.g., COOLTALK™ INTERNET PHONE for NETSCAPE™). The product may make calls to devices (phones, INTERNET phones, other Numberless LAN phones) outside of the network in which it is able to make connections of its own initiative by using the directory dialer as a gateway—however this ability is unlikely to effectively differentiate the product, as it is really a property of the directory dialer/gateway.
Advantageously the voice channel to the speech recognition server is opened immediately on activation of the said one ip phone. This can be achieved when the phone is taken of the hook. An ip socket is opened through the voice over ip interface to the remote speech recognition server. Since no buttons need be pressed by a caller all buttons may be removed from the phone interface increasing the ease of use and lowering manufacturing costs.
The speech recognition server may send a voice message requesting the name of the other ip phone or user be spoken into the ip phone. The caller responds and the spoken name transmitted to the speech recognition functionality on the remote server.
According to another aspect of the invention there is provided a computer network telephone comprising:
speech recognition functionality; a network address database functionality

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Computer network telephony does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Computer network telephony, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computer network telephony will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2912521

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.