Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing
Reexamination Certificate
1999-02-10
2003-01-14
Picard, Leo (Department: 2121)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Product assembly or manufacturing
C700S116000, C029S705000
Reexamination Certificate
active
06507765
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to a computer control system for manufacturing and more particularly to a computer integrated manufacturing real time control and information system.
BACKGROUND OF THE INVENTION
Manufacturers which generate products from a plurality of components, or even which perform an operation on a single component, need to get timely status information on their processing machines. A printed circuit board (PCB) manufacturing line is one example of such an environment. The PCBs travel along conveyer belts for conveyance among various processing machines. For example, a screening machine screen prints a selected pattern of liquid solder or epoxy onto a PCB, followed by a pick and place machine which selects and places various electronic components into the liquid solder on the PCB, and a reflow machine which then heats the solder to affix the component to the PCB. Each processing machine may have an associated host computer which runs the processing machine. If a processing machine is not functioning within the preset required parameters, and the operator is not informed in a timely manner, all products generated could be defective, even if all other processing machines are operating correctly. A number of different systems have attempted to use computers to track and control such product manufacturing operations.
For instance, some prior art systems employ a central system host that communicates directly with machine host computers. Such a system has several disadvantages. The machine host computers typically have limited processing power and are dedicated to running the particular manufacturing machine to which they are attached. Demands for data and processing time made by the central system host computer can interfere with the operation of a machine host computer, slowing production by the machine controlled by the host, and can crash the machine host, totally halting production. Furthermore, the central system host is typically located remote to the processing machines and collects data from numerous machines for historical analysis only, such as at the end of a shift or production period. Thus the machine host computer does not provide real time data to a human machine operator such that a problem can be corrected soon or immediately after it occurs. Instead, a supervisor learns hours later that a machine on a particular product line, though running, was actually producing numerous defective boards and production for the whole line was affected. In addition, because so much data is collected and processed by one central host, viewing and digesting the data in real-time may be a difficult, if not an impossible task for a human operator. Finally, even if the central system host computer informs the operator or supervisor in a timely manner, neither the supervisor nor the central system host computer are located proximate to the machine having a problem, and a quick response is therefore unlikely.
In another prior art approach, a personal computer may be inserted between each processing machine and its associated machine host computer, such as between a machine host computer and an associated screening machine, for controlling communication therebetween and for displaying error messages generated by the screening machine or the machine host computer. The personal computers on the production line may be connected via an interface. Such an approach also has disadvantages. A personal computer may be ill-suited to the noise, vibration, and dust of a typical manufacturing environment, and consumes valuable floor space. Secondly, the personal computers run software and typically include a full graphical user interface for running a variety of software applications. A bored technician running a computer game late at night can crash the personal computer and disrupt an entire production line by halting one or more manufacturing machines. In a worst case scenario, a computer game including a virus may be accidentally loaded onto the personal computer and all computers on the production line network may become infected and crash.
Alternatively, some production personnel have a limited education, or despite a high school education, have limited skills. A personal computer at each manufacturing machine can be intimidating and hence ignored. Furthermore, personal computer operating systems are not necessarily optimal for real time continual collection of data.
In prior art systems, the system host computer and the human operator thereof could easily be overwhelmed by the sheer volume of the data. Accordingly, such data was processed and displayed historically, well after it was generated, and of little use for real time feedback to a machine operator for correction of improvement of the performance of the operation of a processing machine.
A modern manufacturing electronics facility may involve a sea of millions of dollars of parts out on the manufacturing floor, and at times, there is little or no tracking of where the parts are, who or what machines are installing them, and how inventory is being affected. Machine operators, paid on a piecework basis, might be motivated simply to keep a manufacturing machine operating, though not necessarily operating at peak efficiency to produce defect free PCB's. Parts intended to be installed by one machine into one lot of PCB's can find their way onto other processing machines and into other PCB's, with no record of the switch. Years later, when PCB's may begin to fail in the field and a particular electronic component is targeted as the culprit, nonexistent or inaccurate processing records prevent quickly identifying the other PCB's likely to fail. The manufacturer must simply wait for additional failures, and therefore will likely lose customers.
Prior art systems do not adequately affix bar codes to all the individual parts used in the manufacturing process, such as individual reels, feeders, and device locations of a pick and place machine, or required scanning procedures that were laborious and easily circumvented. Machine operators paid on a per piece basis typically have one priority—keeping the processing machine running. Accordingly, in a hurry, reels of parts will be taken from one machine and placed onto another, and the reel scanned may not be the reel actually installed.
SUMMARY OF THE INVENTION
The present invention is directed to a computerized control and information system for a manufacturing system which generates a product from components, where the manufacturing system includes processing machines which generate signals indicative of the parameters of the processing machines' operation. The system includes a sensor in communication with a processing machine for non-intrusively obtaining a parameter signal in real-time from the processing machine so as to not interfere with the parameter signal generation and transmission, and a command apparatus in communication with the sensor for providing real-time analysis of the received parameter signal of the processing machine. The operation of the processing machine is independent of the operation of the command apparatus.
The present invention is also directed to a distributed computerized control and information system for a manufacturing system which generates a product from distinct components, where the manufacturing system includes a plurality of processing machines which generate signals indicative of parameters of the processing machines' operation. The system includes a plurality of sensors in communication with an associated processing machine for non-intrusively obtaining parameter signals in real-time from the processing machine so as to not interfere with the parameter signal generation and transmission. Also included is a plurality of command apparatus in communication with an associated sensor for providing real-time analysis of the received parameter signal of the associated processing machine, and a summary station in communication with the plurality of command apparatus for providin
Hopkins Scott
McGregor William
Moffat Alec
Bahta Kidest
HM Electronic Systems Limited
McCormick Paulding & Huber LLP
Picard Leo
LandOfFree
Computer integrated manufacturing control and information... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Computer integrated manufacturing control and information..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computer integrated manufacturing control and information... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3066892