Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
1999-10-20
2002-08-06
Picard, Leo P. (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S689000, C361S697000, C312S223100, C312S236000, C165S126000
Reexamination Certificate
active
06430041
ABSTRACT:
TECHNICAL FIELD
The present invention is directed toward an apparatus and method for cooling components of a computer system.
BACKGROUND OF THE INVENTION
Three advantageous features of a computer system are: that the system be relatively easy to manufacture; that components of the system be easily accessible for maintenance purposes; and that the system be manufactured from standard components. Computer systems that provide improved manufacturability and maintainability have often been built with specially manufactured components that fit and operate together to give enhanced access to the interior of the system. However, relatively small numbers of several specially manufactured components are more expensive than standard components that are more widely available from multiple sources. A challenge of an improved computer system then is to provide an arrangement of standard components that is relatively easy to manufacture and maintain.
A typical computer system has a chassis that supports and encases a number of components of the computer system. The primary electrical interconnect component of a computer system is a backplane circuit board, such as a motherboard, that serves as a platform to which other components of the computer system may be connected. A motherboard primarily connects to one interior surface of the chassis in a plane parallel to the plane of the one interior surface. The motherboard typically has a number of sockets, slots, and plugs with which other circuit boards with components and other components with plugs may be connected to form electrical, and in some cases, mechanical connections between the circuit boards and components and the motherboard. Examples of circuit boards with components that may be plugged into the motherboard include one or more central processing units, main memory cards, video adapter cards, video acceleration cards, sound cards, SCSI controller cards, parallel or serial interface cards, game-adapter cards, network cards, and others. Circuit boards with components such as these may connect with a motherboard through connectors along one edge of the circuit board. The edge connectors plug directly into a slot or socket in the motherboard. When attached in this manner, the circuit board may be substantially perpendicular to the motherboard. Examples of components with wires connected to plugs that may be plugged into the motherboard include hard disk drives, removable media disk drives, keyboards, pointing devices, printers, scanners, external modems, and others.
A computer system as described above can physically be viewed as a layered system. The base layer is the chassis. On top of the chassis is the motherboard layer. Above the motherboard is a layer of components, some of which mechanically and electrically connect to the motherboard through slots or sockets, and some that electrically connect through flexible wires with plugs. Some of the components may have an additional layer of component securing apparatuses for physically attaching components to the motherboard. Some systems may include cooling fans as an additional layer adjacent to components for cooling the components. While the prior art provides each of these layers, the prior art does not provide for the degree of use of standard components, for the ease of manufacturability, or for the ease of accessibility for maintenance that an improved device would provide.
A number of prior art systems provide enhanced access to underlying layers of a computer system through the use of hinged portions of the computer system. For example, the systems of U.S. Pat. Nos. 5,495,389, 5,701,231, 5,761,034, and 5,784,251 make system layers separable about hinges to provide access to components within the systems. The systems of U.S. Pat. Nos. 5,032,952, 5,172,305, and 5,777,848 provide enhanced access to some components by making power supplies of the computer systems partially removable about hinges. A primary failing of each of these seven systems is that they fail to allow use of standard motherboards, components, and chassis configurations. Some of the hinged power supply art does allow for use of some standard components such as standard power supplies. However, an improved system would not only provide an ability to easily remove the power supply layer, but other layers of the same system such as the component layer and the component securing layer.
One component that must be securely retained on the motherboard of a computer system is the central processing unit, or processor. A processor is often resident on a circuit board. The circuit board and processor together may be referred to below as a processor package. The Intel Corporation P6-based processor packages, for example, connect to the motherboard through what is known as Slot
1
or Slot
2
connectors. A Slot
1
, or 242-contact slot connector, is used with PENTIUM II, PENTIUM III, or CELERON processor packages. The Slot
2
, or 330-contact slot connector, is used with XEON processor packages. Slot
1
and Slot
2
electrical connectors are not, however, adequate to secure a processor package to a motherboard under normal service loads. Therefore, mechanical retaining structures must be added around a Slot
1
or Slot
2
connector to secure the processor package to the motherboard. A typical mechanical retaining structure is known as a “goal post” because it physically resembles a football goal post with two vertical uprights. See
FIG. 8
illustrating goal post “GP” and uprights “UR” supporting a PENTIUM II or PENTIUM III processor package. Each of the vertical uprights is positioned to support a vertical edge of a processor package that may be supported in the connector. Support along the vertical edges, however, has not proven adequate to support the processor package. Similarly, a CELERON processor package is illustrated in FIG.
9
.
To adequately support various Slot
1
and Slot
2
processor packages, a number of specialized retaining structures have been developed. For instance, U.S. Pat. Nos. 5,726,865 and 5,642,263 disclose such structures. A problem with these structures, as well as with the goal posts, is that they add expense to the computer system. Not only do the parts themselves add cost, but also installing the parts adds time to the manufacturing process.
The prior art processor package securing mechanisms have a number of other shortcomings. The mechanisms are designed to only secure a single processor package per mechanism. An improved mechanism could secure a single processor package or dual processor packages. An improved mechanism would also provide improved lateral support as well as vertical support to the processor packages. Lateral support would prevent side-to-side movement of the processor package and prevent the processor package from working loose under service loads. An improved mechanism would provide quicker release of a processor package or packages when desired by an operator. Easier access would allow for shorter manufacturing and maintenance times.
As discussed above, computer systems often include other components on circuit boards, in addition to processors, that connect to a motherboard through sockets or slots. One type of component on a circuit board is often referred to as an expansion board. Expansion boards include such circuit board types as peripheral component interconnect (PCI) boards, industry standard architecture (ISA) boards, and video adapter boards. Expansion boards allow additional circuits, and therefore additional functionality, to be added to computer systems. It is a standard practice to mount expansion boards substantially perpendicular to the motherboard.
Because expansion boards are not soldered into place on the motherboard, it is possible that the boards will become dislodged, lose electrical connectivity, and cease to function properly in shipping or under normal service loads. A number of designs have been proposed to adequately secure expansion boards to the motherboard. The standard configuration uses one screw per expansion board to secure one side
Gagne Jacques
Gradwohl Ray
Hartley Philip
Johnson Gregory P.
Petersen Paul
Lea-Edmonds Lisa
MicronPC, LLC
Picard Leo P.
Trop Pruner & Hu P.C.
LandOfFree
Computer cooling system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Computer cooling system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computer cooling system and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2933774