Ventilation – Electronic cabinet
Reexamination Certificate
1999-12-03
2003-04-29
Joyce, Harold (Department: 3749)
Ventilation
Electronic cabinet
C361S690000
Reexamination Certificate
active
06554697
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to cooling of equipment in cabinets and more particularly to integrate the cabinet cooling into a raised floor or overhead cooling system.
BACKGROUND OF THE INVENTION
It has been found that cabinet cooling systems that are not integrated with a fault tolerant, concurrently maintainable and transparently expandable design of a raised floor or overhead cooling system cannot reasonably control overheating of equipment. The heat produced in some of the higher technology systems exceeds the capacity of systems currently available resulting in damage to high-tech computers and peripheral equipment.
Often, expensive, quality uninterruptable power systems (UPS) are installed for both the computer systems and cabinet fan powered cooling assemblies. Existing cabinet cooling technologies, waste available UPS power because methods do not exist to vary the fan energy as a percentage of the power required to cool the critical computer and other electronic equipment installed in the cabinets. Additionally, the typical cabinet fan is non-redundant and is sized to cool the maximum load projected for the cabinet, even though the average cabinet may only contain a fraction of the heat producing equipment that was considered for the fan selection.
A major problem develops in those systems which are initially sufficient to handle the heat loads expected, but must have cooling capacity increased without disturbing the installed heat producing equipment. There are many industries that cannot readily accept down time of equipment to accommodate changes; such as, railroads, production line control systems, financial markets, air travel reservation centers and the like.
Another problem is the industry practice to provide cuts in a raised floor that are left open with only a few square inches containing any cables or wires. Cooling air is drained from the raised floor unimpeded through the excessive cable openings, resulting in loss of air and static pressure that is needed for cooling elements or equipment in the cabinet overhead cooling is distributed from overhead ducts and the problem is that the room becomes cold, thus reducing the capacity of the cooling system.
In a large number of large installations, cabinets are set side-by-side with no walls in-between. The entire interior area thus created is treated in many respects as a single entity resulting in large amounts of fans used in the aggregate and wasted critical power. In these installations a fan or perhaps two are located in the top wall of the cabinets and may be programmed to a fixed speed. A cabinet with a large heat load may be positioned next to a cabinet with a small heat load and yet the fan associated with this later cabinet may be running at full speed. The usual procedure in such systems because there are separations between cabinets is to run with fans at a standard speed regardless of load which is very wasteful of critical power. It is to be noted that power is supplied for the computer and at most 10% should be used for cooling. Thus, every effort should be made to conserve power used for cooling.
The installations previously provided required the tiles of elevated floors to be cut at a cost of approximately $100/tile to accommodate the cabinets and provide adequate support. The cutting of the tiles, usually on the job, is time consuming and quite expensive. No attempt has been made to date to provide appropriate material to accommodate the floor to the cabinets or the cabinets to the floor.
Large losses of cooling energy are encountered through openings through which cables and wires are introduced into the cabinets. Inadequate use of masking or structural features to provide shielding is the rule.
An important failure of the prior systems is their failure to permit the system to be readily adjusted in the field to the environment. Openings cut in the field that were large enough for installers to work through, pull wires, etc. were grossly oversized for cooling. In many cases the cabinets were pre-wired and left unpowered, waiting months for operating load to materialize, yet the openings left by installers would not be closed. Any and all of the air passing through these access openings under the floor wasted cooling capacity and static pressure. They failed to a great extent to control properly cooling capacity, static pressure and to the extent controllable under very difficult procedures, often requiring a cabinet to be unloaded and tipped over for effecting control. The wasted cooling capacity issues could not be resolved even if other critical systems were adversely affected because the need for continuous data and telecommunications processing prevented any interruption to the operation of equipment in working cabinets. Retrofitting existing cabinets with on-line processing load is nearly impossible to accomplish without risk. Such latter procedure relates to the cooling capacity and pressure under tile floors and the need to insure, once installed, that each cabinet drain off minimum cooling air and produce minimum pressure drop.
OBJECTS OF THE INVENTION
It is an object of the present invention to avoid the necessity of custom cutting of floor tiles to accommodate equipment cabinets.
Another object of the invention is to employ barriers between cabinets to avoid interaction of cooling effects.
It is yet another object of the invention to provide equipment that permits convection cooling of components in a cabinet to reduce or eliminate the need for critical electrical power to operate cabinet cooling fans, or use forced cool air cooling or use of both types of cooling concurrently.
Yet another object of the invention is to provide members in the interior of a cabinet that prevent interference with the flow of cooling air from under the floor on which the cabinets are situated and members that prevent interface with flow into or out of the top of a cabinet.
It is still another object of the invention to permit cabinets having different power loads to be situated side-by-side without causing a cooling capacity conflict between adjacent cabinets.
An object of the invention is to control distribution of static pressure and cooling air from under the floor on which the cabinet is standing.
Another object of the invention is to be able to provide multiple installed fans where needed and to control the operation of the fans including disabling some or all to maintain a desired temperature.
Another object is to use fans that are small enough in size to allow multiple fans to fit on the top or the bottom of a standard sized cabinet for adequate capacity control, limiting the use of critical power yet still providing redundant fan operation.
Still another object of the invention is to provide visual and/or audible indications of the conditions in a cabinet.
Another object is to provide a network connection to monitor the cabinet cooling performance across a local area network (LAN), wide area network (WAN) or the Internet.
It is an object of the invention to prevent leakage of air to be used in cooling around cables bringing in power or control signals.
Still another object is to provide a method of field adjusting the wireway openings so that a cabinet can sit empty without wasting cooling airflow or static pressure, as the wireways remain closed while allowing easy field adjustments for wire and airflow once electronic equipment is installed into the cabinet.
Another object of the invention is to limit the use of critical power to that actually required to maintain temperature.
It is still another object of the invention to be able to accommodate vastly different cooling loads in adjacent cabinets.
Yet another object of the invention is to provide in the top of the cabinet accommodations for a plurality of panels that may accommodate fans, be blank panels, be panels for connection to forced air cooling supplies or large exhaust systems and highly perforated panels permitting ready air flow therethrough.
BRIEF DESCRIPTION OF THE PRESENT INVENTION
The cabinet of the present
Boles Derek S.
Engineering Equipment and Services, Inc.
Joyce Harold
Lieberman & Brandsdorfer LLC
LandOfFree
Computer cabinet design does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Computer cabinet design, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computer cabinet design will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3034519