Computer based instrumentation and sensing for physical...

Education and demonstration – Anatomy – physiology – therapeutic treatment – or surgery... – Anatomical representation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06575757

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Technology
The present invention relates to interactive instrumented models for physical examination training, and more specifically, to an interactive instrumented model of human anatomy in communication with a computer system for training persons to perform a competent and thorough physical examination.
2. Related Art
Medical science has experienced a technological explosion over the last century. Significant advances include discoveries relating to medical imaging, such as x-rays, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and ultrasound. These discoveries allow healthcare professionals to see and examine internal body parts without performing invasive procedures, such as surgery. This information often provides basic biomedical and anatomical information that provides new knowledge that may allow early detection and diagnosis of diseases.
While these technological advances have made significant contributions to the quality of healthcare in general, they suffer from the drawback of being very expensive, and therefore not available for all patients, especially those without medical insurance. For example, CT scans often cost $700 to $800, and the cost of MRIs and PET scans often exceeds $1000. The expense of performing these tests is an even bigger drawback in light of present day managed care systems with their ever-increasing concern for the bottom line.
In response to the concern for saving healthcare dollars, increased emphasis has been placed on disease prevention and early detection. Many cancers previously thought to be virtually untreatable, such as prostate, testicular, and breast, have promising prognoses when detected in their early stages. In addition, various diseases can often be detected and treated in their early stages upon proper physical examination. For example, palpation of the spleen, liver, and lymph nodes can often lead to the detection of an abnormality, i.e., enlargement, tenderness, etc. Aortic aneurisms can sometimes be detected by the skilled practitioner by palpating the mid-line of the belly, and many childhood cancers present themselves as mass lesions in the belly. For the aforementioned reasons, and in light of the often prohibitory cost of modern imaging techniques, there is an ever-increasing need for healthcare clinicians with good physical diagnosis skills.
While there are obvious advantages to having good physical diagnosis skills, unfortunately teaching these skills is often very difficult. There are various reasons for the difficulties, one of which is the desire and need to become skilled at using the new technologies. Additionally, there is often a shortage of individuals willing to be repetitively examined by students trying to hone their clinical skills. In an effort to overcome this problem, manikins or anatomically correct models, are often used as tools for teaching physical diagnosis skills. Unfortunately, these models are often unrealistic, and provide little or no feedback to the practitioner as to the effectiveness of his or her examination. Therefore, there is a need in the art for a realistic training device that provides instant feedback to the user when performing physical examinations.
In addition to training healthcare professionals, it is also increasingly important to train lay persons to perform self-examinations. Public awareness has been raised as to the importance of performing self breast exams and testicular exams, however there is little in the way of teaching proper techniques. In two such areas where early detection is key, the effectiveness of the self-exam is diminished when the individual uses improper technique because small nodules indicative of early disease often go undetected. Therefore, there is a further need for a method and apparatus for teaching non-medical personnel how to properly perform self-examinations.
In addition to the need for self-contained training systems, there is a need for an instrumented training system that can be adapted and used with existing training models of anatomy. For example, there are numerous commercially available, non-instrumented, breast models that are used for practicing breast examinations. Therefore, there is a need for an instrumented modeling system that can be adapted to be used with conventional models.
In U.S. Pat. No. 4,134,218 to Adams, et al., a breast cancer detection training system is disclosed that combines a breast model with an electronic training apparatus. This system has many disadvantages, among which is that the mechanical means for sensing pressure is embedded within the model and that the system is not capable of distinguishing between different levels of pressure applied to a model. In addition, the system is not capable determining the path of the user's search pattern, but rather can only detect the points on the model that were searched. Therefore, there is still a need for an instrumented model system that has a sensing mechanism external to a model, can detect and report on multiple levels of applied pressure, and trace a user's path through an examination.
SUMMARY OF THE INVENTION
A solid-state sensing system, such as a tactile sensing system, is used in conjunction with a physical model of a part of the human body or an actual body part of a patient to serve as an input device into a computer system. Upon application of pressure by a user during a physical examination of the model or part of anatomy, the sensing system detects the level and location of the pressure and sends it to a computer system. The computer system is programmed to accept these inputs and interpret them for display to the person being trained and to any associated instructor for evaluation of the physical examination.
The instrumented breast model system (IBMS) of the present invention was developed to provide the necessary training to lay women and health care providers for the early detection of breast cancer. The IBMS uses a silicone breast model along with a solid-state sensing system and data acquisition modules to collect data on examination performance, e.g., finger placement and palpation level (none, light, medium, and deep). This data is evaluated, and feedback regarding the user's performance is presented to the user in an easily readable graphical format. The IBMS is user-friendly so that anyone who is literate and can use a computer mouse is able to be instructed using this learning system.
An aspect of the invention is an instrumented model system for training a person on performing a physical examination, including a model of a part of anatomy or an actual part of a patient, a means for detecting two to more levels of pressure and a position of each level of pressure applied to the model or patient during an examination, and a means for reporting the levels of pressure and the position of each level of pressure during the examination of the model or patient.
Another aspect of the invention is a method for training a person in giving a physical examination, including the steps of (a) placing a solid-state sensing system in contact with an external surface of a model or part of human anatomy; (b) applying different levels of pressure to one or more locations on the model or part of human anatomy; (c) recording one or more levels of the pressure at each location on the model or part where pressure is applied in step (b); (d) recording one or more positions of the one or more levels of pressure applied against the model or part; and (e) displaying the levels of pressure and the positions of the levels of pressure to the person as an evaluation of his/her examination of the model or part.
Another aspect of the invention is an instrumented model system, including a tactile sensing system, an exterior surface of a model of human anatomy, and a means for responding to pressure applied to the exterior surface of the model of human anatomy.
An advantage of the invention is that it provides a life-like model for practicing self-examinations that prov

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Computer based instrumentation and sensing for physical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Computer based instrumentation and sensing for physical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computer based instrumentation and sensing for physical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3087360

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.