Electrical computers and digital processing systems: multicomput – Distributed data processing
Reexamination Certificate
2000-05-15
2002-02-05
Maung, Zarni (Department: 2154)
Electrical computers and digital processing systems: multicomput
Distributed data processing
C709S200000, C709S203000, C709S212000, C709S216000, C709S227000, C709S229000, C707S793000, C707S793000, C707S793000, C707S793000
Reexamination Certificate
active
06345288
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to data communications systems. More particularly, it relates to an automated communications system which coordinates the transfer of data, metadata, and instructions between databases in order to control and process communications.
2. Discussion of the Related Art
All communications consist of a mechanism for exchanging information between one entity, a provider, and another, a consumer. The terms “provider” and “consumer” are used to designate separate functions in information transfers. Typically an entity, at various times, operates as both a provider and a consumer in any communication relationship. These relationships may be one-to-one, such as between two individuals; one-to-many, such as between company and its customers; or many-to-many, such as between the members of a workgroup. These communications relationships may also exist over multiple communications networks, such phone networks, LANs, public data communications networks, radio and TV networks, wireless networks, and conventional postal mail networks.
Establishing, maintaining, operating, and even terminating any one of these types of communications relationships involves significant work on the part of both the provider and consumer. For example, to initiate any type of communications relationship, providers must first locate the consumers with whom to communicate and vice versa. Solving this problem is subject of several entire industries, such as the directory industry, the mailing list industry, and the advertising industry. Once a provider or consumer has been identified, contact information (e.g., names, titles, addresses, telephone numbers, electronic mail addresses, etc.) must be exchanged between the provider and consumer. This contact information must be maintained by both parties so that future communications can be effected as needed. When the contact information changes for an entity, all providers or consumers having relationships with the entity must be notified of the changes, who in turn must update their own records. This work also extends to other data and records exchanged in the context of the communications relationship, e.g. orders, receipts, product numbers, invoice numbers, customer numbers, notes, brochures, reports, etc. Maintenance of this information requires significant human time involvement for receiving information, storing information, indexing information, searching for desired information, and retrieving information. The human component of record maintenance also creates a potential for error, which can cause the information to be faulty or to become lost.
Once the communications relationship is established, the next major workload is the active use of the relationship to accomplish communications objectives. The problems here take different forms depending on the type of communications relationship. For example, in a one-to-many relationship, particularly a mass-market relationship such as a company and its customers, the problem is how to efficiently disseminate information about products and services to consumers. Optimally, such information would be disseminated only to the consumers who need the information, only at the precise time they need it, and only via the communications network the consumer preferred. However, knowing who needs what information, when, and how can be very difficult. Therefore, providers typically disseminate information widely in the form of mass advertisements and mailings via all possible communications mediums in order to reach all likely consumers. Because of this broad dissemination by providers, consumers receive large amounts of information, much of which is irrelevant to them. Consumers are forced to sort and filter through this information, and frequently much of it is discarded. Information which is kept may not be immediately useful, but may be needed at a later time. Unless the consumer expends a great deal of work to store, catalog, and index this information, the information can be difficult or impossible to find when the consumer actually needs it.
This same problem of efficient information distribution is exacerbated in many-to-many communications relationships, such as among the members of a workgroup. Here, communications are much more frequent and timely, and there is much greater quantity of information to be shared, stored, archived, and indexed. Members of a workgroup also have a strong need to employ communications for group coordination, such as scheduling meetings, conference calls, project deadlines, etc. These communications involve time deadlines and feedback requirements which are not typically present in one-to-many communications relationships.
With one-to-one communications relationships, the problem of efficient information disemination is lessened because the parties typically have a much higher knowledge of each other's needs and interests. Conversely, the need to use communications for coordination purposes is greatly increased, largely because between individuals the need for real-time communications sessions such as phone calls and personal meetings is acute. Thus the universal problem of “phone-tag”, when both parties exchange numerous messages trying to coordinate the opportunity to communicate in real time.
The next workload involved in communications relationships is when the parties need to exchange, process, and store structured data. In a one-to-many communications relationship, a common example is a consumer ordering a product. The consumer must place a telephone call, locate a salesperson, and then manually transmit the necessary ordering information, which the salesperson must manually record. Paper or electronic product order forms can help automate this process for the provider, but they still must be filled out manually by the consumer. Many of these forms require the same standard information from the consumer, which the consumer must enter repeatedly. All of these information transfers require human involvement and thus create the potential for data errors. On the provider's part, more work is required to perform error checking on the order, process it, and in many cases return an acknowledgment to the consumer. Many providers invest heavily in data processing and electronic communications systems for automating these functions. However, the lack of a standard communications system for exchanging common data means that providers adopt largely proprietary systems, increasing the investment necessary for every provider. In addition, consumers must still interact with each these systems manually.
In a many-to-many communications relationship, such as a workgroup, the need for structured data exchange is even higher, especially when automated data processing tools such as computer software are in widespread use. Also, the need for structured data exchange for workgroup coordination activities, such as scheduling and planning, grows significantly.
One-to-one communications relationships may also involve strong needs for structured data exchange. For example, two individuals from different companies may need to review and revise a document involving both companies. The ability to do so electronically, using a secure method of exchange over public data networks, would make the task considerably easier. Individuals involved with one-to-one communications relationships also have an acute need to use structured data exchange to solve the problem of scheduling communications sessions, i.e. the phone-tag problem.
Since all communications relationships are inherently dynamic, they involve three other common tasks involved for providers and consumers: copying the relationship, transfering the relationship, and terminating the relationship. Copying is when one consumer wants to share a particular communications relationship with another consumer. For example, a mail-order catalog customer may wish to give a copy of the catalog to a friend, or a businessperson may need to share the phone number of a colleague with a
Banay Dan
Heymann Peter Earnshaw
Jones Kevin Benard
Mushero Steven Mark
Oberlander Jeffrey Todd
Barot Bharat
Maung Zarni
OneName Corporation
Wolf Greenfield & Sacks P.C.
LandOfFree
Computer-based communication system and method using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Computer-based communication system and method using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computer-based communication system and method using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2951292