Computer and peripheral networking device permitting the...

Multiplex communications – Channel assignment techniques – Details of circuit or interface for connecting user to the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S870030

Reexamination Certificate

active

06262993

ABSTRACT:

BACKGROUND
1. Field of Invention
The Emerging Field of Computer Telecommunications Networking
Telecommunications means communication over a distance (tele means “far off” in Greek), and refers mainly to electronic forms such as radio, television, telegraph, telephone, facsimile (“fax”), and computer communications. In modern distance-applications of telecommunications, typically the message is encoded on the energy form (electrical, electromagnetic, or optical) that links the source and destination. In the 1980s and '90s, telecommunications has come increasingly to refer to systems that simultaneously accommodate voice, sound, text, graphic, image, computational, and moving-image message forms. This invention supports improved telecommunications networking between computers and between peripheral devices that are connected to host computers.
Computer Communications
Since the 1960s, computer design has included the development of systems for the remote linkage of users to computers (time-sharing), and of computers to one another. Networks that have arisen for military, government, and large-company commercial users evolved beginning in the 1970s in Western Europe, Japan, and the United States. These networks have become increasingly interconnected and have included new additions from other regions of the world. In the 1990s, with large increases in the numbers of desktop computers on these networks, and further connections over the public telephone networks, it has become possible to exchange messages (electronic mail, or e-mail), computer bulletin-board postings, information files, and computer programs with thousands of other computers in the same network.
Among the best known noncommercial computer networks is the Internet which, in the early 1990s, connected some 13 million users worldwide. In many respects, the Internet offers a preview of computer-based public telecommunications of the future.
By the mid-1990s, up to 150 million personal computers had been connected to networks, as estimated by respected industry analysts. The vast majority of these networks involve the use of Unshielded Twisted Pair (UTP) or Shielded Twisted Pair (STP) wiring.
As implied in the earlier discussion of digital coding, it is technologically possible to combine nearly all telecommunications services on a common, very-high-capacity, switched, and interactive network. Video, voice, graphics, data, and computation services could all be easily and inexpensively available over this “information highway”—which would involve an interlinking and upgrading of already existing systems.
Just as the growth of industrial and urban society has depended upon such infrastructure components as transportation facilities and water and power supply, scholars of modern growth and development see telecommunications, and its computer capabilities, as a major infrastructure component of the information age. The economic development policy of the administration of President Bill Clinton included the development of the information highway as a basis for encouraging new businesses and improving the delivery of educational and social services. The future will see much more telecommunications planning in the form of infrastructure development.
Basic Components
The basic components of a telecommunications system are usually identified as the devices that link source and destination: (e.g., transmitter, signal, medium, and receiver); noise that may interfere with this process; and feedback that represents a reversal of message flow. Source and destination are defined as any entities—people or machines—capable of creating or responding to messages. A source selects a message, which is converted by a transmitter into an energy form, or signal, that can travel by a medium, usually broadcasting or wire, to a receiver that converts the message back to a form that can be understood by the destination. Several factors contribute to a loss or distortion of the signal. Collectively they may be referred to as noise; however, such effects as external interference (common-mode interference), inter-symbol interference, jitter, cross-talk (especially so-called near-end cross-talk), and attenuation all contribute to lowered usability of the signal once it has traversed a length of a given transmission medium.
Computer and Peripheral Networking
Within a network, the source and destination are each referred to as a node. In a computer network, the node is a host computer that interfaces with the human user(s) and with other host computers by means of said network. The computer is called a host because it serves as the center of a computing system. Peripheral devices such as disk drives, CD-ROMs, tape drives, printers and the like are networked together to form a system. A peripheral device may be connected to more than one host computer allowing the sharing of its resources.
Networking Media
Both the host computer node and the networked peripheral require a plurality of pairs of conductive connections to accomplish transmission at the Physical Layer. These can include Shielded Twisted Pair (STP), Coaxial Cable, and Unshielded Twisted Pair (UTP). Optical cables can also be used, with the required optical interfaces and connectors, in place of metallic or other electrically conductive media. Most modern office buildings have Unshielded Twisted Pair (UTP) wiring laid within walls and in ceilings. It has been estimated that over 90% of the in-place wiring is UTP. In earlier implementations of networks, STP constituted a greater share of the installed base of copper cabling. In the opinion of some cabling infrastructure suppliers, with the use of higher and higher communication speeds, and in situations where interference constraints or problems with compliance with FCC requirements are acute, there may well be a resurgence in the use of higher quality STP cabling.
Signal Protocols
A variety of protocols are used for host computer node and peripheral networking, including Carrier Sense Multiple Access with Collision Detection (CSMA/CD), often referred to as Ethernet, Token Ring, Distributed Queue Dual Bus (DQDB/SMDA), Asynchronous Transfer Mode (ATM), or Fiber Distributed Data Interface (FDDI), Small Computer (SCSI), Serial Storage Architecture (SSA), and Fiber Channel. Of these SSA is developing technology based upon a set of ANSI standards.
2. Description of Prior Art
Transmission Media
Various networking protocols, including Token Ring, Distributed Queue Dual Bus (DQDB/SMDA), Asynchronous Transfer Mode (ATM), or Fiber Distributed Data Interface (FDDI), Small Computer (SCSI), Serial Storage Architecture (SSA), and Fiber Channel expect, at least, Shielded Twisted Pair (STP) cabling.
Simple Shielded Twisted Pair (STP) cabling consists of a twisted pair or a multiplicity of twisted pairs, over which a single conductive shield is wrapped.
Higher-quality Shielded Twisted Pair (STP) consists of either multiple twisted pairs of wires in a single cable within which each pair is surrounded by a conductive shield, or a multiplicity of individually shielded twisted pairs, which themselves together are overwrapped with a conductive shield. These cables work well at high transmission speeds (up to 300 megabaud and beyond).
Unshielded Twisted Pair (UTP), sometimes called Telephone Twisted Pair, consists of one or more pairs of two wires held together by twisting them and insulated by, usually, a type of plastic. Different pairs within a cable will often be twisted using different numbers of twists per unit of cable length. While Unshielded Twisted Pair is the most prevalent installed wiring, it can have significant limitations The transmission characteristics of the wire itself are impacted by the presence and effect of non-ideal and non-linear properties such as impedance (a combination of resistance, inductance, and capacitance) in the cable and the associated connectors. The higher the frequency of the signal, the more that it will be attenuated, that is, the intensity of the desired high frequency signal components will be reduced. The higher fre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Computer and peripheral networking device permitting the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Computer and peripheral networking device permitting the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computer and peripheral networking device permitting the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2500696

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.