X-ray or gamma ray systems or devices – Specific application – Computerized tomography
Reexamination Certificate
1999-07-26
2001-02-13
Church, Craig E. (Department: 2876)
X-ray or gamma ray systems or devices
Specific application
Computerized tomography
Reexamination Certificate
active
06188743
ABSTRACT:
In addition the application is related to the following U.S. applications filed on Oct. 10, 1997 and commonly assigned with the present application, the contents of which are incorporated herein in their entirety by reference:
U.S. application Ser. No. 08/948,937, “Air Calibration Scan for Computed Tomography Scanner with Obstructing Objects,” invented by David A. Schafer, et al.,
U.S. application Ser. No. 08/948,928, “Computed Tomography Scanning Apparatus and Method With Temperature Compensation for Dark Current Offsets,” invented by Christopher C. Ruth, et al.,
U.S. Pat. No. 5,909,477, “Computed Tomography Scanning Target Detection Using Non-Parallel Slices,” invented by Christopher C. Ruth, et al.,
U.S. Pat. No. 5,901,198, “Computed Tomography Scanning Target Detection Using Target Surface Normals,” invented by Christopher C. Ruth, et al.,
U.S. Pat. No. 5,887,047, “Parallel Processing Architecture for Computed Tomography Scanning System Using Non-Parallel Slices,” invented by Christopher C. Ruth, et al.,
U.S. Pat. No. 5,881,122, “Computed Tomography Scanning Apparatus and Method Generating Parallel Projections Using Non-Parallel Slices,” invented by Christopher C. Ruth, et al.,
U.S. application Ser. No. 08/949,127, “Computed Tomography Scanning Apparatus and Method Using Adaptive Reconstruction Window,” invented by Bernard M. Gordon, et al.,
U.S. application Ser. No. 08/948,450, “Area Detector Array for Computed Tomography Scanning System,” invented by David A. Schafer, et al.,
U.S. application Ser. No. 08/948,692, “Closed Loop Air Conditioning System for a Computed Tomography Scanner,” invented by Eric Bailey, et al.,
U.S. application Ser. No. 08/948,493, “Measurement and Control System for Controlling System Functions as a Function of Rotational Parameters of a Rotating Device,” invented by Geoffrey A. Legg, et al.,
U.S. application Ser. No. 08/948,698, “Rotary Energy Shield for Computed Tomography Scanner,” invented by Andrew P. Tybinkowski, et al.,
BACKGROUND OF THE INVENTION
In modern third generation computed tomography (CT) scanners, an X-ray source and detector array are secured on opposite sides of the central opening of an annular disk. The disk is mounted to a gantry support for rotation about a subject or object (positioned in the opening) to be scanned. During a scan, the source and detectors image the object disposed within the machine at incremental scan angles. In fourth generation CT scanners the detectors are fixed relative to the object or subject being scanned, and only the source is mounted on the rotating disk for rotation about the subject or object. In both types of systems a process referred to as reconstruction generates a series of two-dimensional images or slices of the object from the captured data.
For “fixed z-axis” scans (the “z-axis” being the axis of rotation of the disk), the disk and its components rotate about a stationary object or subject with the disk fixed at a specific Z-axis location. For “helical” scans, translational movement along the Z-axis is simultaneous provided between the object or subject and the rotating disk. In both fixed and translational scanning systems, precision in the angular velocity, or rotation rate, of the gantry disk is essential for minimization of reconstruction errors.
Timing belts, or cog belts, have been employed in the past to effect a high degree of precision in rotation rate. A standard timing belt is driven by a motor mounted to the stationary frame. Periodic lateral grooves transverse to the major axis of the belt mesh with teeth on a drive sprocket at the motor and a large driven sprocket mounted to the gantry disk. The driven sprocket must be large enough to avoid interference with the central aperture of the gantry and thus allow room for a object to pass therethrough. For this reason, extraordinarily-large timing belts are required in these systems.
A typical prior art scanner requires at least a six meter timing belt. Timing belts of such a large magnitude are very expensive, as they are difficult to manufacture and often must be custom built, and/or purchased in large quantities. Furthermore, the large driven sprockets are specialized and are therefore expensive, available at a cost of $4,000 to $6,000, depending on the diameter. Alignment between the drive sprocket and driven sprocket must be accurate to a high degree of precision, to avoid lateral walking of the belt relative to the sprockets. Timing belts tend to wear rapidly, and therefore must be replaced frequently, for example once per year for a medical scanner. Replacement is an involved procedure, requiring removal of the scanner system from operation for an extended period of time; perhaps a couple of days. This is due to the fact that in prior art configurations, the driven sprocket is positioned between the annular gantry and the fixed frame. Access to the timing belt for its removal and replacement therefore requires complete removal of the gantry from the frame. Positioning of the sprocket on the component side of the gantry is impractical, since the timing belt would interfere with the rotating gantry components.
A further disadvantage of timing belts in CT systems is their tendency to modulate the rotational speed of the gantry at the frequency of their teeth or cogs. The modulation causes artifacts in the resulting images which must be resolved or otherwise corrected by the image processing system.
In addition, mounting the disk for rotational movement requires some type of reliable support so that the disk reliably rotates with little or no lateral movement in the plane of rotation. In the typical prior art system, standard bearing arrangements, with highly machined races and balls, are expensive. Because of the weight and size of the disk the bearings tend to wear, and are difficult to replace. One solution to this problem has been to mount the disk for centerless rotation on rollers such as shown in U.S. Pat. No. 5,473,657 issued Dec. 5, 1995 in the name of Gilbert W. McKenna, and assigned to the present assignee.
SUMMARY OF THE INVENTION
The present invention is directed to a CT scanner drive assembly that mitigates and/or eliminates the shortcomings associated with prior art scanner drive assemblies described above. The apparatus of the invention comprises an annulus, preferably in the form of a disk, which is sheaved about its perimeter such that the annulus is operable as a driven pulley rotatable about an object to be scanned. Electronic components are preferably mounted to the annulus for performing a tomographic scan of the object. A motor includes a similarly sheaved drive pulley. A belt tensioned between the drive pulley of the motor and the driven pulley of the annulus transfers rotational motion of the motor to the annulus for driving the annulus rotationally about the object during a scan.
In a preferred embodiment, the belt comprises a V-belt or poly-V-belt. An adjustable tensioner draws the motor drive pulley toward or away from the annulus for adjusting the tension of the belt. The annulus preferably comprises a disk having first and second faces. By spacing the disk from the frame, components may be mounted on both faces of the disk, or through apertures in the disk, mitigating space limitations for mounting components to the disk, and balancing the disk center of mass near the disk plane.
In one preferred embodiment, a disk bearing is preferably located at or near the disk center of mass, and mounted to spacers rigidly coupled to the system frame. This configuration reduces the moment arm between the bearing and disk center of mass, improving the life of the bearing and allowing for use of less expensive, simpler bearings, for example Franke four-wire bearings of the type described in U.S. Pat. No. 5,071,264, incorporated herein by reference.
In another preferred embodiment, the annulus is mounted for rotation within the gantry frame wherein opposing grooves are formed in the periphery of the annulus and the inner periphery of the opening of the gantry frame, and are shaped to receive less expensive, si
Duffy Michael J.
Nemirovsky Lidia
Tybinkowski Andrew P.
Analogic Corporation
Church Craig E.
McDermott & Will & Emery
LandOfFree
Computed tomography scanner drive system and bearing does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Computed tomography scanner drive system and bearing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computed tomography scanner drive system and bearing will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2559669