Compressor

Pumps – Motor driven – Including means utilizing pump fluid for augmenting cooling,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S366000, C418S055100

Reexamination Certificate

active

06814551

ABSTRACT:

The present disclosure relates to the subject matter disclosed in PCT application No. PCT/EP01/14918 of Dec. 18, 2001, which is incorporated herein by reference in its entirety and for all purposes.
BACKGROUND OF THE INVENTION
The invention relates to a compressor for refrigerant, comprising a housing, a scroll compressor, which is disposed in the housing and has a first compressor body, which is disposed in a stationary position in the housing, and a second compressor body, which can move relative to the first compressor body, each of these bodies having a base and respective first and second scroll ribs, which are formed, for example, in the form of an involute to a circle and/or an arc of a circle, which rise above the respective base and engage in one another in such a way that, during compression of the refrigerant, the second compressor body can be moved along an orbital path about a center axis with respect to the first compressor body, and a drive for the second compressor body, having a drive motor.
Compressors of this type are known from the prior art, for example DE 100 99 10 460.
In compressors of this type, there is a need to achieve the highest possible efficiency, in particular the lowest possible leakage, during compression of the refrigerant.
SUMMARY OF THE INVENTION
In the case of a compressor of the type described in the introduction, this object is achieved, in accordance with the invention, by the fact that the refrigerant which is to be compressed by the scroll compressor can wash around the two compressor bodies in the region of their rear side, which is remote from the scroll ribs, so that the compressor bodies can be cooled.
The advantage of the inventive solution is considered to be that it makes it possible for both compressor bodies to be cooled in the same way and therefore for at least a similar temperature distribution to be achieved in both compressor bodies, so that both compressor bodies have a similar thermal expansion, and therefore the low but not insignificant leakage which can be achieved by means of high manufacturing precision is not adversely affected by uneven temperature distributions and therefore different levels of thermal expansion, so that overall the efficiency of the scroll compressor is reduced as a result.
In this context, it is particularly advantageous if the refrigerant which is to be compressed can wash around the second compressor body in the region of the rear side, which is disposed opposite the second scroll rib, radially outside its driver receiving part, since refrigerant washing around the compressor body on its rear side ensures that this body is effectively cooled, and in particular cooling is ensured as close as possible to the regions of the compressor body in which most heat is introduced.
Furthermore, it is particularly advantageous if the refrigerant which is to be compressed can wash around the first compressor body in the region of a rear side, which is remote from the first scroll rib.
In this case too, it is particularly advantageous for the compressor body to be cooled via its rear side, in order once again to provide cooling as close as possible to the regions of the compressor body in which considerable amounts of heat are introduced, in particular through heated compressed refrigerant.
In order also to enable the scroll ribs to be cooled as efficiently as possible via the rear side of the compressor body, it is preferably provided that the rear surface of the respective compressor body is formed directly by a base which carries the respective scroll rib, so that the scroll ribs which are connected to the respective base are also cooled as efficiently as possible.
In particular, with a view to the most efficient conduction of heat possible, it is particularly advantageous if the rear side of the compressor body forms the rear side of a unitary part which includes the base and the scroll rib and, in particular in the region of the rear side, does not have any elements which are incorporated in or connected to, for example fitted onto, this part.
To improve the cooling of the compressor bodies still further, it is preferably provided that both compressor bodies can be cooled by the refrigerant which is to be compressed in the region of a peripheral side which is on the outer side with respect to the center axis.
In connection with the explanation of the cooling of the first compressor body in the region of its rear side, it has not been defined in more detail whether cooling takes place substantially over the entire rear side or only in partial regions of the rear side.
In particular, it has also not been specified in further detail to what extent the first compressor body is still fixed via the rear side.
A particularly favorable solution provides that the refrigerant which is to be compressed can wash around the first compressor body in the region of its rear side which lies outside a high-pressure connection.
This provides a particularly large area, namely the area which lies radially outside the high-pressure connection, for cooling of the first compressor body, the high-pressure connection also contributing, in particular at least in part, to fixing the first compressor body in the housing.
A solution which is particularly advantageous in design terms provides that a rear-side cooling chamber, through which the refrigerant which is to be compressed can wash, lies between the rear side of the first compressor body and a partition of the housing, which runs at a spacing from this rear side.
The rear-side cooling chamber may be formed in a very wide variety of ways. A particularly favorable solution provides for the rear-side cooling chamber to surround a mounting receiving part for the first compressor body, so that substantially the rear side of the compressor body, with the exception of the regions in which the mounting receiving part is active, can be cooled via the rear-side cooling chamber.
It is preferable for the mounting receiving part to be formed in such a way that the rear-side cooling chamber runs in the form of a ring around the mounting receiving part for the first compressor body.
In this context, it is particularly suitable if the high-pressure connection for the first compressor body is integrated into the mounting receiving part and therefore passes through this mounting receiving part.
Particularly efficient cooling of the first compressor body is achieved if the mounting receiving part can also be cooled via the rear-side cooling chamber, so that if heat is introduced into the mounting receiving part by the refrigerant emerging under high pressure, the mounting receiving part itself can be directly cooled, in order for this heat to be dissipated.
In connection with the previous explanation of the individual exemplary embodiments, emphasis has been placed primarily on the cooling of the compressor bodies via the rear side. The cooling of the compressor bodies can be improved still further by the fact that the rear-side cooling chamber merges into a peripheral-side cooling chamber which surrounds an outer periphery of the first compressor body.
In this case, it is preferable for the peripheral-side cooling chamber to surround not only the outer periphery of the first compressor body but also the outer periphery of the second compressor body.
A solution which is particularly advantageous in mechanical terms provides that the first compressor body is supported by outer support elements which lie radially outside the scroll ribs with respect to the center axis.
In this case, it is particularly advantageous if the peripheral-side cooling chamber runs around the outer support elements, and therefore cools the first compressor body via the outer support elements, in particular if the outer support elements are formed integrally on the first compressor body.
Thus far, no further statement has been made in connection with the cooling action of the refrigerant which is to be compressed and washes through the rear-side cooling chamber. By way of example, a particularly advantageous exemplar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compressor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compressor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compressor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3283685

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.