compressible conductive interface

Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – With provision to conduct electricity from panel circuit to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S071000

Reexamination Certificate

active

06299459

ABSTRACT:

BACKGROUND OF THE INVENTION
Circuit testers characterize performance of electronic circuits and systems. A critical component of a circuit tester is a conductive interface that enables conductors carrying stimulus/response signals to have electrical continuity with electrical contacts of the circuits and systems being characterized. As the trend in modern circuits and systems is toward higher frequency operation and smaller physical size, there is motivation to correspondingly improve the conductive interfaces so that they do not limit the performance capability, and hence the utility, of the circuit testers. To accommodate the high frequency operation and small physical size of the circuits and systems characterized by the circuit testers, the conductive interfaces preferably have low inductance and closely spaced conductive elements.
SUMMARY OF THE INVENTION
A compressible conductive interface constructed according to the preferred embodiment of the present invention has low inductance conductive elements that are closely spaced. The compressible conductive interface provides electrical continuity between a first group of contacts and a second group of contacts in the presence of a compression force applied between the groups of contacts. An insulating housing in the compressible conductive interface has one or more channels that are recessed into a first side of the insulating housing and a matrix of apertures at a bottom of the channels that extend through the insulating housing to a second side of the insulating housing.
The compressible conductive interface includes one or more compressible bars. Each compressible bar has a pair of opposing sides, a base adjacent to the opposing sides, and a nose adjacent to the opposing sides and opposite to the base. The compressible bars are positioned in predesignated ones of the one or more channels so that the nose of the compressible bar is at the bottom of the channel into which the compressible bar is positioned.
A series of conductive elements are included in the compressible conductive interface. Each conductive element includes a conductive frame with a frame bottom and a pair of opposing walls extending from the frame bottom. The opposing walls each have an inner surface that terminates in a stop. Each conductive frame is positioned with the frame bottom contacting the base of a corresponding compressible bar and with the opposing walls straddling the opposing sides of the compressible bar so that the opposing walls of the conductive frame extend beyond the nose of the compressible bar and into a corresponding aperture in the matrix. The frame bottoms are adapted to mate with the second group of contacts.
Each conductive element also includes a conductive slider with a pair of legs extending from a head. Each of the legs is terminated in a corresponding foot. The legs are positioned in a corresponding aperture in the matrix and are received between the pair of opposing walls of a corresponding conductive frame, so that a bottom of each foot contacts the nose of the compressible bar. An end of each foot slidably contacts the inner surface of a corresponding one of the opposing walls of the corresponding conductive frame with an associated contact force. The heads of the conductive sliders extend beyond the second side of the insulating housing and are adapted to mate with the first group of contacts.
Each conductive element of the compressible conductive interface has a neutral state wherein the compressible bar biases the conductive slider so that a top of each foot rests against the stop on a corresponding one of the opposing walls of the conductive frame of the neutral conductive element. Each conductive element also has a loaded state wherein the head of the conductive slider is biased toward the frame bottom of the conductive frame of the loaded conductive element. In this loaded state, the compression force applied between the first group of contacts and the second group of contacts reduces a distance between the nose and the base of the compressible bar as the compression force is increased. The nose translates a component of the compression force so that the contact force between the ends of the feet of the conductive slider and the inner surfaces of the opposing walls of the corresponding conductive frame proportionately increases as the compression force F is increased.


REFERENCES:
patent: 5609489 (1997-03-01), Bickford et al.
patent: 6062870 (2000-05-01), Hopfer, III et al.
patent: 6183266 (2001-02-01), Turner
patent: 6210173 (2001-04-01), Matsunaga
Burn-In & Test Socket Workshop Proceedings; Feb. 27-29, 2000, Hilton Mesa Pavilion Hotel, Mesa, Arizona; Sponsored By The IEEE Computer Society, Test Technology Technical Council; 11 Pages.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

compressible conductive interface does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with compressible conductive interface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and compressible conductive interface will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2596736

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.