Comprehensive vertigo management

Surgery – Diagnostic testing – Eye or testing by visual stimulus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06800062

ABSTRACT:

BACKGROUND AND SUMMARY OF THE INVENTION
1. Introductory Information
This invention relates to a comprehensive, computer-based, medical method and apparatus for diagnosing and treating human disorders involving symptoms of dizziness, vertigo and imbalance. In particular, it relates to a unique and remarkably versatile system and methodology for examining, and where appropriate treating, and rehabilitating (reconditioning), the usual complex vestibular-system source of such symptoms.
As will be more fully elaborated below, vertigo, imbalance and related symptoms are often caused by, or related to, dysfunction in the central nervous system with regard to processing of visual, vestibular and somatosensory inputs. Thus, in some cases, and in relation to the utility of the present invention for rehabilitation, vestibular therapy, as performed by the invention, is directed toward retraining, reconditioning and habituating central nervous system processing in this regard. The methods of accomplishing this are many, but, as will be seen, may involve exercises that include isolating or denormalizing certain ones of the visual, vestibular and somatosensory inputs while exercising others. The present invention can readily carry out many of these exercises or tasks, under control of a computer, an operator, or the subject, or combinations thereof, via the control and processing structures and modalities offered and enabled by the invention. It can carry out exercises that consist of isolating or denormalizing certain of the visual, vestibular and somatosensory inputs, or others that encourage the coordination of these inputs. The system and methodology of the invention can prescribe the tasks, customize the character and complexity of the exercises to the subject, carry them out and document progress.
All of such examining, treating and/or rehabilitating activities are referred to herein as vertigo management. The system and method of the invention offer an opportunity to perform, in a unified setting, a very wide range of tasks relating to vestibular-system issues, including several novel tasks, such as real-time event-following correlation, not heretofore available.
2. Background Information
As was mentioned briefly above, the vestibular-system medical issues to which the present invention addresses its focus are complex. The background information which now follows generally outlines these issues, and sets the stage for a clear understanding about how the present invention deals elegantly with this complexity in a clearly intuitive versatile, flexible and straight-forward manner.
Dizziness, including vertigo and imbalance, is one of the most common complaints presented to the physician. Although these symptoms may be caused by a variety of abnormal conditions affecting either the peripheral or central nervous systems, the cause can most commonly be traced to abnormalities involving the vestibular endorgans in the inner ear or, less frequently, to their associated neural pathways in the brainstem or cerebellum. The vestibular endorgans are mechano-transducers that normally sense either angular or linear acceleration of the head. Thus, progress in diagnosing and treating the above disorders has been very dependent upon the ability to observe and quantify the reflex output of these vestibular sensors, and/or the subjective responses thereto.
The sensors of angular acceleration, which provide the percept of rotation in space in any plane, are the semicircular canals (also referred to as SC and SCC), which are located with three on each side within the inner ear, and oriented orthogonally to each other. Each semicircular canal acts as a transducer of rotation in the plane of its orientation. It contains fluid that, due to inertia, lags angular accelerations or decelerations of the head in the plane of the canal, and thereby actuates a sensor of fluid displacement, the cupula. This provides information via neural pathways to the brain stem that is carried via a reflex arc to the eye muscles, called the vestibulo-ocular reflex (VOR). During rotations of the head, this reflex keeps the eyes oriented in space via a counter-rotation until the eyeball reaches a certain point, whereupon there is a quick correction in the opposite direction called a saccade. When repetitive, this results in an involuntary jerking motion of the eyes called nystagmus that occurs in the plane of the semicircular canals that generate it. By observing this nystagmus under various conditions one can determine whether the semicircular canals are functioning normally and, if not, which canal is dysfunctional and the nature of the dysfunction. Also, the nystagmus can be followed in the course of treatment to monitor effectiveness. Dysfunction of the semicircular canals results mainly in symptoms of vertigo.
Quantitative assessment of the VOR under various conditions is carried out as a standard battery of tests known as nystagmography. When eye electrodes are used to detect eye movement, it is called electronystagmography (ENG). When video technology is used to detect eye movement, it is called videonystagmography (VNG). Testing is usually carried out in a light-obscuring environment in order to minimize the effects of optic fixation on the suppression of nystagmus. To varying degrees, nystagmus can also be suppressed by lack of alertness, certain drugs and habituation.
The standard ENG/VNG test battery includes a few standard head positions that are intended to provide an analysis of positional vertigo. Unfortunately, these test positions were standardized prior to the development of new knowledge regarding the causes of positional vertigo, such that they are not the ideal anatomical positions for obtaining useful information. For instance, certain key positions have been found where certain types of positional vertigo are aggravated and where the associated nystagmus is most easily detected, yet none of these is included in the standard test battery. Thus, new methods of investigating the causes of positional nystagmus and vertigo call for new standard positions for screening purposes, plus the triggering of more definitive tests when indicated, some of which require that the patient be maneuvered in ways that are most effectively practiced with a multi-axial positioning apparatus. In addition, nystagmus data is typically acquired and analyzed in small segments, completely ignoring the nystagmus occurring during intervening periods and transition moves. Inasmuch as the nystagmus occurring in a particular test position will be dependent upon numerous factors, such as the rapidity and method of the just-preceding transition maneuver, the time lapse after the test position is reached until the data-acquisition run is commenced, the exact angles of the test positions, etc., the usual ENG/VNG test battery as now generally carried out is not, in reality, standardized. Nor does it make optimum use of the data available.
The presence of many factors, some of which may be quite subtle, and of various time-changing and simultaneously interacting conditions, such as subject motions to, from and beyond various relevant spatial orientations, casts, the practice of vestibular-system investigation, treatment and rehabilitation with a need and desire for sophisticated real-time correlation, and succinct and cogent presentation of relevant unfolding facts and vestibular-system behaviors. In particular, it dictates for the need for thoughtful computer processing, and intuitive and quickly graspable situation presentation, preferably in clear visual (and especially pictorial) form, to aid the investigating/treating/rehabilitating physician, or other attending party. Subtle, nuanced responses to test, treatment and rehabilitation protocols, often interactively related to other simultaneous such responses, challenge accurate observability, and can easily escape significant notice, even to skilled observers whose attentions may be widely divided because of the attendant complexities of changing test parameters and subject responses. Such subtl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Comprehensive vertigo management does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Comprehensive vertigo management, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Comprehensive vertigo management will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3300862

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.