Comprehensive transmitter power control system for radio...

Telecommunications – Transmitter and receiver at separate stations – Plural transmitters or receivers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S063300, C455S126000

Reexamination Certificate

active

06236863

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to the field of radio communication, and more specifically, to the field of output power control in code division multiple access (CDMA) wireless telephones incorporating intermodulation (IM) spurious response attenuation.
Several industry standard publications currently direct design and operation of many types of CDMA cellular telephones, including portable mobile stations, handheld mobile stations, and mobile stations mounted in automobiles. These standards are considered to be understood by those reasonably skilled in the art of the present invention. Standard specifications relevant to the present invention include TIA/EIA/IS-95-A Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System, sections 6.1.1.1-6.1.2.4.2, and TIA/EIA/IS-98, Recommended Minimum Performance Standards for Dual-Mode Wideband Spread Spectrum Cellular Mobile Stations, sections 1.4, 9.4.3, 10.4.4.1-10.5.2.3.
Precise mobile station power control is a very important requirement for proper and efficient operation of a CDMA wireless telephone system. During times when a mobile station is located far away from the nearest base station, the mobile station needs to transmit signals at maximum output power to maintain an optimum communication link. However, as a CDMA mobile station moves closer to a base station, the amount of mobile station output power necessary to continue communication is reduced. Furthermore, such a reduction in mobile station output power is necessary to reduce interference between mobile stations. Thus, in addition to preserving battery reserves, the use of as little mobile station output power as is necessary to maintain a strong communication link at all times is a requirement to ensure proper operation of a CDMA cellular telephone system.
According to the above-referenced standards, a CDMA mobile station shall provide two independent means for output power adjustment: open loop estimation, solely a mobile station operation, and closed loop correction, involving both the mobile station and the base station. An open loop gain control system detects the strength of the signal received from the base station and uses that value to inversely control the output power of the mobile station. Thus, according to the open loop gain control system, as the received signal strength increases (the mobile station nearing the base station), the amount of output power is decreased. A typical open loop gain control system includes a conventional automatic gain control system which detects received signal strength and uses that value to control an adjustable gain transmitter amplifier which accordingly varies the amount of gain applied to the radio transmission signal. Thus, the open loop gain control system is solely a mobile station operation based upon the strength of the signal received at the mobile station from the base station.
A closed loop gain control system, on the other hand, involves both the mobile station and the base station. In a closed loop gain control system, the base station detects the strength of the signal received from the mobile station and then accordingly instructs the mobile station to increase or decrease power. Thus, the mobile station continually analyzes control data from the base station (typically in the form of a single bit commanding either an increase or a decrease in power) to determine whether to increase or decrease output power. A closed loop gain control system is typically implemented using a closed loop power control register which is functionally connected to a pulse density modulator within a mobile station modem application-specific integrated circuit (MSM ASIC) to provide an analog output representation of the value stored in the register. This analog representation is then combined with output from the open loop gain control system to assist in controlling the adjustable transmitter amplifier. The register value and adjustable transmitter amplifier are also usually in an inverse relationship such that an increase in the register value (typically due to receiving a “1” from the base station) results in a decrease in overall power.
Another factor that affects mobile station output power control is IM spurious response attenuation of received RF signals by the mobile station. IM signals are extraneous signals produced when two or more interfering analog signals combine and are, for example, mixed in a non-linear medium, such as the non-linear operating region of a semi-conductor device such as an amplifier. These interfering analog signals often result in the production of IM signals that fall into the frequency range of the desired digital signal frequency spectrum, the effects of which are to increase the communication errors at the mobile station, potentially causing calls to be dropped. Since the output power of the mobile station is a function of the strength of the signals received from the base station, the attenuation of those signals by the mobile station to reduce IM interference must be accounted for in determining the mobile station output power. For instance, when base station signals are attenuated at the mobile station, the open loop gain control system of the mobile station now detects attenuated signal strengths that do not reflect the actual base station signal strength thereby misleading the mobile station to increase output power. Thus, the attenuation of base station signals by the mobile station must be accounted for by the mobile station output power control system to ensure proper mobile station output power control.
Achieving proper operation of an output power control system incorporating gain control systems which account for received signal attenuation within a single mobile station can create special design challenges. In addition to the difficulties already described, other difficulties are encountered when combining open and closed loop systems by additional requirements imposed by the above-referenced standards. Namely, there are limits on total power output and spurious emission levels, requirements for closed loop variations about the open loop estimate, and response time requirements for responding to instructions from the base station. First, using a handheld mobile station operating at full rate communication, the effective radiated power at maximum output power has an upper limit of 30 dBm and a lower limit of 25 dBm. Thus, when at maximum power, the mobile station must radiate at least 25 dBm but not more than 30 dBm. The actual value for effective radiated power at maximum output power is typically around 28 dBm because of the second requirement which limits maximum spurious emission levels. On the lower end of the total output power scale, the mobile station must have a mean controlled output power less than −50 dBm when the output power is set to minimum. Thus, according to industry standard specifications, the mobile station should ideally be able to output power throughout a range of −50 dBm to 30 dBm.
In addition to these requirements, the closed loop gain control system must have a range of at least 24 dB above and 24 dB below the open loop estimate. In other words, regardless of where the open loop estimate places the total output power along the −50 dBm to 30 dBm range, the closed loop gain control system is required to be able to increase or decrease the total output power by at least 24 dB upward or downward from that open loop estimate. In one implementation of the closed loop gain control system, the closed loop range is divided into equal steps represented by incremental memory values corresponding to one dB units of gain. Thus, as the base station instructs the mobile station to increase or decrease power, the closed loop gain control system attempts to increase or decrease, respectively, the total output power by one dB.
Clearly, these requirements related to total output power and closed loop gain control create the potential for conflict. In other words, if the open lo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Comprehensive transmitter power control system for radio... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Comprehensive transmitter power control system for radio..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Comprehensive transmitter power control system for radio... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2439423

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.