Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai
Patent
1996-07-29
1999-03-02
Tsang, Cecilia J.
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Peptide containing doai
514 17, 530322, 424117, 2601175, A61K 3800
Patent
active
058771476
DESCRIPTION:
BRIEF SUMMARY
FIELD OF THE INVENTION
The present invention relates to the use of muramyl peptide compounds in the prophylaxis of cancers, including the treatment of pre-cancerous conditions.
BACKGROUND OF THE INVENTION
Cancer is a term which is used to describe the development of abnormal cells which grow in a rapid and uncontrolled manner and are often invasive. The invasion of vital organs frequently results in the death of a patient.
Cancer is extremely widespread and, indeed, it is thought that about 30% of people are likely to contract cancer at some time in their lives with cancer being the cause of death in around 20%. Traditional treatments for cancer include surgery and radiotherapy but, more recently, attention has been turned to the development of chemotherapeutic or cytotoxic agents which can damage or kill cancer cells.
In recent years, increasing attention has been drawn towards the occurrence of tissue changes that are indicative of an increased risk for the subsequent development of particular cancers at that site of change. A variety of these have been described, including modifications of the intestinal wall (intestinal polyps) which are associated with increased incidence of cancers of the colon and rectum, alterations of the skin (actinic keratoses) which are associated with carcinomas of the skin, and condylomata of the cervix, which are associated with cancer of the uterine cervix. To one skilled in the art, these conditions or tissue changes tending to proceed to cancer, to be associated with the development of cancer, or to carry a significant risk of cancer are known as precancerous conditions or lesions. In some cases, the cause of these precancerous conditions is reasonably well established, as in the case of actinic keratoses resulting from excessive exposure to sunlight, or infection with human papilloma virus in the case of condylomata of the cervix (Cancer in Practice by G J G Rees, S E Goodman and J A Bullimore. Pub Butterworth-Heinemann, Oxford, 1993). In other cases, the cause of the precancerous lesion has not been identified.
The present invention relates to the use of certain muramyl peptide compounds (MDPs) in the prophylaxis of cancer and especially in the treatment of precancerous lesions.
It has long been known that non-specific stimulation of the immune system can be brought about by exposure to bacteria, or components extracted from bacterial cells. The specific components responsible for this activity were identified as sugar-containing peptides of the cell wall, and further biochemical analysis of the peptides identified them as the peptidoglycan component of the cell wall. The smallest effective synthetic molecule was found to be an N-acetyl-muramyl-L-alanyl-D-isoglutamine (Merser et al, Biochem. Biophys. Res. Comm. 66 1316 (1975)) which is often referred to as a prototype muramyl dipeptide or prototype MDP.
Subsequently, a wide variety of analogues of prototype muramyl dipeptide were synthesised, some of which have been proposed as treatments for the restoration of immune function or the non-specific stimulation of the immune system. These analogues, and prototype MDP itself are known as muramyl peptide compounds (MDPs).
In the past, some work has been carried out on the use of MDPs in the treatment of cancer and, for example, Key et al, J. Natl. Cancer Inst., 69(5), 1189-1198 (1982) describe the treatment of lung melanoma metastases with liposomes containing an MDP derivative. Later, the same group of workers investigated the optimal conditions and limitations for the eradication of melanoma metastases using a liposome encapsulated MDP derivative, MTP-PE (Fidler et al, Cancer Imnunol. Inmmunother., 21(3) 169-173 (1986)). In addition it was found that orally administered non-liposome encapsulated MTP-PE produced tumouricidal activity in both lung and peritoneal macrophages and was effective in inhibiting lung and lymph node metastasis although it was not effective in eradicating well established melanoma metastases (Fidler et al, J. Immunol., 138(12), 4509-4514 (1987)).
REFERENCES:
patent: 4101536 (1978-07-01), Yamamura et al.
patent: 4186194 (1980-01-01), Adam et al.
patent: 4235771 (1980-11-01), Adam et al.
patent: 4317771 (1982-03-01), Shiba et al.
patent: 4370265 (1983-01-01), Adam et al.
patent: 4395399 (1983-07-01), Ovchinnokov et al.
patent: 4406890 (1983-09-01), Tarcsay et al.
patent: 4430265 (1984-02-01), Yamamura et al.
patent: 4461761 (1984-07-01), Lefrancier et al.
patent: 4522811 (1985-06-01), Eppstein et al.
patent: 4684625 (1987-08-01), Eppstein et al.
patent: 4774085 (1988-09-01), Fidler
patent: 5189014 (1993-02-01), Cowan, Jr.
patent: 5210072 (1993-05-01), Chedid et al.
Andronova, T.M., Glucosaminylmuramyldipeptide (GMDP). Synthesis and Immunoadjuvant Activity, Chim. Oggi, 9 (12), pp. 21-25, 1991.
Mescheryakova, et al. Structure -Function Investigation of Glucoasminylmuramylpeptides, Bioorganicheskaya Khimiya, vol. 17, No. 9, pp. 1157-1165, 1991.
Ivanov, et al., Structure, Design, and Synthesis of Immunoactive Peptides, Pure & Appl. Chem., vol. 59, No. 3, pp. 317-324, 1987.
Dorland's Illustrated Medical Dictionary, 27th Edition, pp. 912-913, 1105, 1333, 1774, 1876, 1988.
Chedid et al., Potential Use of Muramyl peptides in Cancer Therapy and Prevention, Bact. Cancer, pp. 49-65, 1982.
Dozmorov, et al., Study of immunomodulatory Properties of N-Acetylmuramyl-L-Alany-D-Isoglutamine and N-Acetylglucosaminyl-(beta 1-4)-N-Acetylmuramyl-L-Alanyl-D-Isoglutamine, Biomed. Sci., pp. 651-658, 1991.
Azuma, Ichiro, Immunological Properties of Muramyl Dipeptides (MDP) and Related Synthetic Compounds, Kekkaku, 67(9), pp. 637-642, 1992.
Azuma, et al., Stimulation With Synthetic acyl-MDP Derivatives of Host-Defense Mechanism Against Cancer and Viral Infections, Nat. Immun., Cancer, Biol. Response Modif., 1st (1986), Meeting Date 1985, 1986.
Acevedo, et al., Prevention of Oncogenic Viral Infections in Mice with CGP 11637, a Synthetic Muramyl Dipeptide Analog, Antimicrob. Agents Chemother., 28(5), pp. 589-596, 1985.
Gangemi, et al., Novel Approaches for Targeting Antiviral Agents in the Treatment of Arena-, Bunya, Flavi-, and Retroviral Infections, Report (1991), Order No. AD-A243598, 294 pp. 1992.
Lazdins, et al., the Lipophilic Muramyl Peptide MTP-PE is a Potent Inhibitor of HIV Replication in Macrophages, AIDS Res. Hum. Retroviruses, 6(10), pp. 1157-1161, 1990.
Masihi, et al., Muramyl Dipeptide Inhibits Replication of Human Immunodeficiency Virus In Vitro, AIDS Res. Hum. Retroviruses, 6(3), pp. 393-399, 1990.
Masihi, et al., Muramyl Peptides Confer Hepatoprotection Against Murine Viral Hepatitis, Int. J. Immunopharmacol., 11(8), pp. 879-886, 1989.
Iida, et al., Prophylactic Activity Against Sendai Virus Infection and Macrophage Activation with Lipophilic Derivatives of N-acetylglucosaminylmuramyl Tri- or Tetrapeptides, Vaccine, 7(3), pp. 225-228, 1989.
Chomel, et al., Prophylactic aand Terapeutic Effects of Murabutide in OF1 Mice Infected with Influenze A/H3N2 (A/Texas/1/77) Virus, J. Biol. Respons. Modif., 7(6), pp. 581-586, 1988.
Dietrich, et al., Enhancement of Host Resistance Agaisnt Virus Infections by MTP-PE, a Synthetic Lipophilic Muramyl Peptide, Int. J. Immunopharmacol. 8(8), pp. 931-942, 1986.
Phillips, et al., Modulation of Murine Lymphoma Growth by MDP, MDP(D-D) and Cyclophosphamide, Int. J. Immunopharmacol., 5(3), pp. 219-227, 1983.
Fidler, I.J., "Optimization and Limitations of Systemic Treatment of Murine Melanoma Metastases with Liposomes Containing Muramyl Tripeptide Phosphatidylethanolamine," Cancer Immunol. Immunother. 21:169-173 (1986).
Fidler, I.J., et al., "Systemic Activation of Tumoricidal Properties in Mouse Macrophages and Inhibition of Melanoma Metastases by the Oral Administration of MTP-PE, a Lipophilic Muramyl Dipeptide," J. Immunol. 138(12):4509-4514 (1987).
Key, M.E., et al., "Isolation of Tumoricidal Macrophages From Lung Melanoma Metastases of Mice Treated Systemically With Liposomes Containing a Lipophilic Derivative of Muramyl Dipeptide," J. Nat. Canc. Inst. 69(5):1189-1198 (1982).
Kiso,
Celsa Bennett
Peptech (UK) Limited
Tsang Cecilia J.
LandOfFree
Compounds for medicinal use does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compounds for medicinal use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compounds for medicinal use will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-422914