Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Amino acid sequence disclosed in whole or in part; or...
Reexamination Certificate
1998-07-27
2001-11-06
Allen, Marianne P. (Department: 1631)
Drug, bio-affecting and body treating compositions
Antigen, epitope, or other immunospecific immunoeffector
Amino acid sequence disclosed in whole or in part; or...
C530S350000, C424S192100, C424S277100
Reexamination Certificate
active
06312695
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to compositions and methods for the treatment of lung cancer. The invention is more specifically related to nucleotide sequences that are preferentially expressed in lung tumor tissue, together with polypeptides encoded by such nucleotide sequences. The inventive nucleotide sequences and polypeptides may be used in vaccines and pharmaceutical compositions for the treatment of lung cancer.
BACKGROUND OF THE INVENTION
Lung cancer is the primary cause of cancer death among both men and women in the U.S., with an estimated 172,000 new cases being reported in 1994. The five-year survival rate among all lung cancer patients, regardless of the stage of disease at diagnosis, is only 13%. This contrasts with a five-year survival rate of 46% among cases detected while the disease is still localized. However, only 16% of lung cancers are discovered before the disease has spread.
Early detection is difficult since clinical symptoms are often not seen until the disease has reached an advanced stage. Currently, diagnosis is aided by the use of chest x-rays, analysis of the type of cells contained in sputum and fiberoptic examination of the bronchial passages. Treatment regimens are determined by the type and stage of the cancer, and include surgery, radiation therapy and/or chemotherapy. In spite of considerable research into therapies for the disease, lung cancer remains difficult to treat.
Accordingly, there remains a need in the art for improved vaccines, treatment methods and diagnostic techniques for lung cancer.
SUMMARY OF THE INVENTION
Briefly stated, the present invention provides compounds and methods for the therapy of lung cancer. In a first aspect, isolated DNA molecules encoding lung tumor polypeptides are provided, such DNA molecules comprising a nucleotide sequence selected from the group consisting of: (a) sequences provided in SEQ ID NO: 1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111 and 113; (b) sequences complementary to a sequence provided in SEQ ID NO: 1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111 and 113; and (b) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.
In a second aspect, isolated polypeptides are provided that comprise at least an immunogenic portion of a lung tumor protein or a variant thereof. In specific embodiments, such polypeptides comprise an amino acid sequence encoded by a DNA sequence comprising a nucleotide sequence selected from the group consisting of (a) sequences recited in SEQ ID NO: 1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111 and 113; (b) sequences complementary to a sequence provided in SEQ ID NO: 1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111 and 113; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.
In related aspects, expression vectors comprising the inventive DNA molecules, together with host cells transformed or transfected with such expression vectors are provided. In preferred embodiments, the host cells are selected from the group consisting of
E. coli
, yeast and mammalian cells.
In another aspect, fusion proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known lung tumor antigen, are provided.
The present invention further provides pharmaceutical compositions comprising one or more of the above polypeptides, fusion proteins or DNA molecules and a physiologically acceptable carrier, together with vaccines comprising one or more such polypeptides, fusion proteins or DNA molecules in combination with an immune response enhancer.
In related aspects, the present invention provides methods for inhibiting the development of lung cancer in a patient, comprising administering to a patient an effective amount of at least one of the above pharmaceutical compositions and/or vaccines.
These and other aspects of the present invention will become apparent upon reference to the following detailed description. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.
DETAILED DESCRIPTION OF THE INVENTION
As noted above, the present invention is generally directed to compositions and methods for the therapy of lung cancer. The compositions described herein include polypeptides, fusion proteins and DNA molecules. Also included within the present invention are molecules (such as an antibody or fragment thereof) that bind to the inventive polypeptides. Such molecules are referred to herein as “binding agents.”
In one aspect, the subject invention discloses polypeptides comprising an immunogenic portion of a human lung tumor protein, wherein the lung tumor protein includes an amino acid sequence encoded by a DNA molecule including a sequence selected from the group consisting of (a) nucleotide sequences recited in SEQ ID NO: 1-109, 111 and 113, (b) the complements of said nucleotide sequences, and (c) variants of such sequences. As used herein, the term “polypeptide” encompasses amino acid chains of any length, including full length proteins, wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising a portion of one of the above lung tumor proteins may consist entirely of the portion, or the portion may be present within a larger polypeptide that contains additional sequences. The additional sequences may be derived from the native protein or may be heterologous, and such sequences may (but need not) be immunoreactive and/or antigenic. As detailed below, such polypeptides may be isolated from lung tumor tissue or prepared by synthetic or recombinant means.
As used herein, an “immunogenic portion” of a lung tumor protein is a portion that is capable of eliciting an immune response in a patient inflicted with lung cancer and as such binds to antibodies present within sera from a lung cancer patient. Such immunogenic portions generally comprise at least about 5 amino acid residues, more preferably at least about 10, and most preferably at least about 20 amino acid residues. Immunogenic portions of the proteins described herein may be identified in antibody binding assays. Such assays may generally be performed using any of a variety of means known to those of ordinary skill in the art, as described, for example, in Harlow and Lane,
Antibodies: A Laboratory Manual,
Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1988. For example, a polypeptide may be immobilized on a solid support (as described below) and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example,
125
I-labeled Protein A. Alternatively, a polypeptide may be used to generate monoclonal and polyclonal antibodies for use in detection of the polypeptide in blood or other fluids of lung cancer patients. Methods for preparing and identifying immunogenic portions of antigens of known sequence are well known in the art and include those summarized in Paul,
Fundamental Immunology,
3
rd
ed., Raven Press, 1993, pp. 243-247.
The compositions and methods of the present invention also encompass variants of the above polypeptides and DNA molecules. A polypeptide “variant,” as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the therapeutic, antigenic and/or immunogenic properties of the polypeptide are retained. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity to the identified polypeptides. The identity of polypeptides may be determined by comparing seq
Reed Steven G.
Wang Tong Tong
Allen Marianne P.
Corixa Corporation
Seed Intellectual Property Law Group PLLC
LandOfFree
Compounds and methods for therapy of lung cancer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compounds and methods for therapy of lung cancer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compounds and methods for therapy of lung cancer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2618630