Compounds and methods for modulating cell adhesion

Chemistry: natural resins or derivatives; peptides or proteins; – Peptides of 3 to 100 amino acid residues – Cyclic peptides

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

514 9, 514 11, A61K 3800, A61K 3812, C07K 500, C07K 700

Patent

active

060310723

ABSTRACT:
Cyclic peptides and compositions comprising such cyclic peptides are provided. The cyclic peptides comprise a cadherin cell adhesion recognition sequence HAV. Methods for using such peptides and compositions for modulating cadherin-mediated cell adhesion in a variety of contexts are also provided.

REFERENCES:
patent: 5231082 (1993-07-01), Schasteen
patent: 5352667 (1994-10-01), Lider et al.
patent: 5510628 (1996-04-01), Georger, Jr. et al.
patent: 5585351 (1996-12-01), Ranscht
patent: 5591432 (1997-01-01), Bronson et al.
patent: 5665590 (1997-09-01), Yang
Blaschuk et al., "Identification of a Conserved Region Common to Cadherins and Influenza Strain A Hemagglutinins," J. Mol. Biol. 211: 679-682, 1990.
Blaschuk et al., "Identification of a Cadherin Cell Adhesion Recognition Sequence," Developmental Biology 139: 227-229, 1990.
Lutz et al., "Secondary Structure of the HAV Peptide Which Regulates Cadherin-Cadherin Interaction," Journal of Biomolecular Structure & Dynamics 13(3):447-455, 1995.
Munro and Blaschuk, Cell Adhesion and Invasion in Cancer Metastasis, R.G. Landes Company, Austin, TX, 1996, Chapter 3, "The Structure, Function and Regulation of Cadherins," pp. 17-34.
Newton et al., "N-Cadherin Mediates Sertoli Cell-Spermatogenic Cell Adhesion," Developmental Dynamics 197: 1-13, 1993.
Overdiun et al., "Solution Structure of the Epithelial Cadherin Domain Responsible for Selective Cell Adhesion," Science 267: 386-389, 1995.
Redies and Takeichi, "Cadherins in the Developing Central Nervous System: An Adhesive Code for Segmental and Functional Subdivisions," Developmental Biology 180: 413-423, 1996.
Willems et al., "Cadherin-dependent cell aggregation is affected by decapeptide derived from rat extracellular super-oxide dismutase," FEBS Letters 363: 289-292, 1995.
Shapiro et al., "Structural basis of cell-cell adhesion by cadherins," Nature 374: 327-337, 1995.
Alexander et al., "An N-Cadherin-Like Protein Contributes to Solute Barrier Maintenance in Cultured Endothelium," Journal of Cellular Physiology 156: 610-618, 1993.
Ali et al., "Conformationally Constrained Peptides and Semipeptides Derived from RGD as Potent Inhibitors of the Platelet Fibrinogen Receptor and Platelet Aggregation," J. Med. Chem. 37(6): 769-780, 1994.
Blaschuk and Farookhi, "Estradiol Stimulates Cadherin Expression in Rat Granulosa Cells," Developmental Biology 136: 564-567, 1989.
Byers et al., "Fibroblast Growth Factor Receptors Contain a Conserved HAV Region Common to Cadherins and Influenza Strain A Hemagglutinins: A Role in Protein-Protein Interactions?," Developmental Biology 152: 411-414, 1992.
Craig et al., "Concept and Progress in the Development of RGD-Containing Peptide Pharmaceuticals," Biopolymers (Peptide Science) 37: 157-175, 1995.
Letourneau et al., "Interactions of Schwann Cells with Neurites and with Other Schwann Cells Involve the Calcium-dependent Adhesion Molecule, N-cadherin," Journal of Neurobiology 22(7): 707-720, 1991.
Samanen et al., "Development of a Small RGD Peptide Fibrinogen Receptor Antagonist with Potent Antiaggregatory Activity in Vitro," J. Med. Chem. 34(10): 3114-3125, 1991.
Cardarelli et al., "The Collagen Receptor .alpha.2.beta.1, from MG-63 and HT1080 Cells, Interacts with a Cyclic RGD Peptide," The Journal of Biological Chemistry 267(32): 23159-23164, 1992.
Cepek et al., "Expression of a candidate cadherin in T lymphocytes," Proc. Natl. Acad. Sci. USA 93: 6567-6571, 1996.
Doherty and Walsh, "Signal transduction events underlying neurite outgrowth stimulated by cell adhesion molecules," Current Opinion in Neurobiology 4: 49-55, 1994.
Laird et al., "Gap Junction Turnover, Intracellular Trafficking, and Phosphorylation of Connexin43 in Brefeldin A-treated Rat Mammary Tumor Cells," The Journal of Cell Biology 131(5): 1193-1203, 1995.
Lee et al., "Expression of the Homotypic Adhesion Molecule E-Cadherin by Immature Murine Thymocytes and Thymic Epithelial Cells," Journal of Immunology 152: 5653-5659, 1994.
Moran, "The Protein Delivery Service. Advances in technologies for delivering proteins and peptides in therapeutically useful forms," Pharmaceutical Forum Issue 6: 4-7, 1996.
Munro et al., "Characterization of Cadherins Expressed by Murine Thymocytes," Cellular Immunology 169(Article No. 0123): 309-312, 1996.
Tsutsui et al., "Expression of Cadherin-Catenin Complexes in Human Leukemia Cell Lines," J. Biochem. 120: 1034-1039, 1996.
Wickelgren, "Breaking the Skin Barrier," PS 12: 86-88, 1996.
Williams et al., "Activation of the FGF Receptor Underlies Neurite Outgrowth Stimulated by L1, N-CAM, and N-Cadherin," Neuron 13: 583-594, 1994.
Blakemore, "Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve," Nature 266: 68-69, 1977.
Bottenstein and Sato, "Growth of a rat neuroblastoma cell line in serum-free supplemented medium," Proc.Natl. Acad. Sci USA 76(1): 514-517, 1979.
Brecknell et al., "Bridge grafts of Fibroblast Growth Factor-4-Secreting Schwannoma Cells Promote Functional Axonal Regeneration in the Nigrostriatal Pathway of the Adult Rat," Neuroscience 74(3): 775-784, 1996.
Brockes et al., "Studies on Cultured Rat Schwann Cells. I. Establishment of Purified Populations from Cultures of Peripheral Nerve," Brain Research 165: 105-118, 1979.
Brook et al., "Morphology and Migration of Cultured Schwann Cells Transplanted Into the Fimbria and Hippocampus in Adult Rats," GLIA 9: 292-304, 1993.
Carlstedt et al., "Nerve Fibre Regeneration Across the PNS-CNS Interface at the Root-Spinal Cord Junction," Brain Research Bulletin 22: 93-102, 1989.
Doherty and Walsh, "CAM-FGF Receptor Interactions: A Model for Axonal Growth," Molecular and Cellular Neuroscience 8(Article No. 0049): 99-111, 1996.
Duncan et al., "Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat," Journal of Neurocytology 17: 351-360, 1988.
Fok-Seang et al., "An analysis of astrocytic cell lines with different abilities to promote axon growth," Brain Research 689: 207-223, 1995.
Fok-Seang et al., "Migration of Oligodendrocyte Precursors on Astrocytes and Meningeal Cells," Developmental Biology 171: 1-15, 1995.
Franz, "Precutaneous Absorption. On The Relevance Of In Vitro Data," The Journal of Investigative Dermatology 64(3): 190-195, 1975.
Franz, "The Finite Dose Technique as a Valid in Vitro Model for the Study of Percutaneous Absorption in Man," Curr. Probl. Dermatol. 7: 58-68, 1978.
Ghirnikar and Eng, "Astrocyte-Schwann Cell Interactions in Culture," GLIA 11: 367-377, 1994.
Iruela-Arispe et al., "Expression of SPARC during Development of the Chicken Chorioallantoic Membrane: Evidence for Regulated Proteolysis In Vivo," Molecular Biology of the Cell 6: 327-343, 1995.
Liuzzi and Lasek, "Astrocytes Block Axonal Regeneration in Mammals by Activating the Physiological Stop Pathway," Science 237: 642-645, 1987.
McCarthy and Vellis, "Preparation of Separate Astroglial and Oligodendroglial Cell Cultures from Rat Cerebral Tissue," J. Cell Biology 85: 890-902, 1980.
Orr, "Angiogenesis Research Offers New Approaches to Treatment of Disease," Genetic Engineering News, pp. 15-16, 42, May 1, 1996.
Saffell et al., "Expression of a Dominant Negative FGF Receptor Inhibits Axonal Growth and FGF Receptor Phosphorylation Stimulated by CAMs," Neuron, pp. 231-242, Feb. 1997.
Blaschuk et al., "E-Cadherin, estrogens and cancer: is there a connection?" The Canadian Journal of Oncology 4(4): 291-301, 1994.
Chuah et al., "Differentiation and survival of rat olfactory epithelial neurons in dissociated cell culture," Developmental Brain Research 60: 123-132, 1991.
Doherty et al., "Neurite Outgrowth in Response to Transfected N-CAM and N-Cadherin Reveals Fundamental Differences in Neuronal Responsiveness to CAMS," Neuron 6: 247-258, 1991.
Gumbiner et al., "The Role of the Cell Adhesion Molecule Uvomorulin in the Formation and Maintenance of the Epithelial Junctional Complex," The Journal of Cell Biology 107: 1575-1587, 1988.
Matsuzaki et al., "cDNAs of Cell Adhesion Molecules of Different Specificity Induce Changes in Cell Shape and Border Formation in Cultured S180 Cel

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compounds and methods for modulating cell adhesion does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compounds and methods for modulating cell adhesion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compounds and methods for modulating cell adhesion will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-684009

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.