Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Amino acid sequence disclosed in whole or in part; or...
Reexamination Certificate
1999-05-27
2001-05-01
Duffy, Patricia A. (Department: 1645)
Drug, bio-affecting and body treating compositions
Antigen, epitope, or other immunospecific immunoeffector
Amino acid sequence disclosed in whole or in part; or...
C424S185100, C424S192100, C530S350000
Reexamination Certificate
active
06224869
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses. In particular, in these and in other regards, the invention relates to novel polynucleotides and polypeptides of the response regulator family, hereinafter referred to as “response regulator”.
BACKGROUND OF THE INVENTION
The Streptococci make up a medically important genera of microbes known to cause several types of disease in humans, including, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, plural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid. Since its isolation more than 100 years ago,
Streptococcus pneumoniae
has been one of the more intensively studied microbes. For example, much of our early understanding that DNA is, in fact the genetic material was predicated on the work of Griffith and of Avery, Macleod and McCarty using this microbe. Despite the vast amount of research with
S. pneumoniae,
many questions concerning the virulence of this microbe remain. It is particularly preferred to employ Streptococcal genes and gene products as targets for the development of antibiotics.
The frequency of
Streptococcus pneumoniae
infections has risen dramatically in the past 20 years. This has been attributed to the emergence of multiply antibiotic resistant strains and an increasing population of people with weakened immune systems. It is no longer uncommon to isolate
Streptococcus pneumoniae
strains which are resistant to some or all of the standard antibiotics. This has created a demand for both new anti-microbial agents and diagnostic tests for this organism.
While certain Streptococcal factors associated with pathogenicity have been identified, e.g., capsule polysaccharides, peptidoglycans, pneumolysins, PspA Conplement factor H binding component, autolysin, neuraminidase, peptide permeases, hydrogen peroxide, IgAI protease, the list is certainly not complete. Further very little is known concerning the temporal expression of such genes during infection and disease progression in a mammalian host. Discovering the sets of genes the bacterium is likely to be expressing at the different stages of infection, particularly when an infection is established, provides critical information for the screening and characterization of novel antibacterials which can interrupt pathogenesis. In addition to providing a fuller understanding of known proteins, such an approach will identify previously unrecognised targets.
Many two component signal transduction systems (TCSTS) have been identified in bacteria (Stock, J. B., Ninfa, A. J. & Stock, A. M.(1989) Microbiol. Rev. 53, 450-490). These are involved in the bacterium's ability to monitor its surrounding and adapt to changes in its environment. Several of these bacterial TCSTS are involved in virulence and bacterial pathogenesis within the host.
Response regulators are components of the TCSTS. These proteins are phosphorylated by histidine kinases and in turn once phosphorylated effect the response, often through a DNA binding domain becoming activated. The response regulators are characterized by a conserved N-terminal domain of approximately 100 amino acids. The N-terminal domains of response regulators as well as retaining five functionally important residues, corresponding to the residues D12, D13, D57, T87, K109 in CheY (Matumura, P., Rydel J. J., Linzmeier, R. & Vacante, D. (1984) J. Bacteriol. 160, 36-41), have conserved structural features (Volz, K. (1993) Biochemistry 32, 11741-11753). The 3-dimensional structures of CheY from
Salmonella typhimurium
(Stock, A. M., Mottonen, J. M., Stock, J. B.& Schutt, C. E. (1989) Nature, 337, 745-749) and
Escherichia coli
(Volz, K & Matsumura, P. (1991) J. Biol. Chem. 266, 15511-15519) and the N-terminal domain of nitrogen regulatory protein C from
S.typhimurium
(Volkman, B. F., Nohaile, M. J., Amy, N. K, Kustu, S. & Wemmer, D. E. (1995) Biochemistry, 34 1413-1424), are available, as well as the secondary structure of SpoOF from
Bacillus subtilis
(Feher, V. A., Zapf, J. W., Hoch, J. A, Dahlquist, F. W., Whiteley, J. M. & Cavanagh, J. (1995) Protein Science, 4, 1801-1814). The structures have a (a/b)5 fold. Several structural residues are conserved between different response regulator sequences, specifically hydrophobic residues within the &bgr;-sheet hydrophobic core and sites from the a-helices. This family of response regulators includes DegU protein from
Bacillus brevis.
DegU is the response regulator of the TCSTS involved in regulating the production of extracellular proteases (Henner, D. J., Yang, M. & Ferrari, E. (1988) J. Bacteriol. 170, 5102-5109).
Histidine kinases are components of the TCSTS which autophosphorylate a histidine residue. The phosphate group is then transferred to the cognate response regulator. The Histidine kinases have five short conserved amino acid sequences (Stock, J. B., Ninfa, A. J. & Stock, A. M.(1989) Microbiol. Rev. 53,450-490, Swanson, R. V., Alex, L. A. & Simon, M. I.(1994) TIBS 19 485-491). These are the histidine residue, which is followed after approximately 100 residues by a conserved asparagine residue. After another 15 to 45 residues a DXGXG motif is found, followed by a FXXF motif after another 10-20 residues. 10-20 residues further on another glycine motif, GXG is found. The two glycine motifs are thought to be involved in nucleotide binding.
Among the processes regulated by TCSTS are production of virulence factors, motility, antibiotic resistance and cell replication. Inhibitors of TCSTS proteins would prevent the bacterium from establishing and maintaining infection of the host by preventing it from producing the necessary factors for pathogenesis and thereby have utility in anti-bacterial therapy.
Clearly, there is a need for factors, such as the novel compounds of the invention, that have a present benefit of being useful to screen compounds for antibiotic activity. Such factors are also useful to determine their role in pathogenesis of infection, dysfunction and disease. There is also a need for identification and characterization of such factors and their antagonists and agonists which can play a role in preventing, ameliorating or correcting infections, dysfunctions or diseases.
The polypeptides of the invention have amino acid sequence homology to a known DegU from
Bacillus brevis protein.
SUMMARY OF THE INVENTION
It is an object of the invention to provide polypeptides that have been identified as novel response regulator polypeptides by homology between the amino acid sequence set out in Table 1 [SEQ ID NO:2] and a known amino acid sequence or seqences of other proteins such as DegU from
Bacillus brevis
protein
It is a further object of the invention to provide polynucleotides that encode response regulator polypeptides, particularly polynucleotides that encode the polypeptide herein designated response regulator.
In a particularly preferred embodiment of the invention the polynucleotide comprises a region encoding response regulator polypeptides comprising the sequence set out in Table 1 [SEQ ID NO:1] which includes a full length gene, or a variant thereof.
In another particularly preferred embodiment of the invention there is a novel response regular protein from
Streptococcus pneumoniae
comprising the amino acid sequence of Table 1 [SEQ ID NO:2], or a variant thereof.
In accordance with another aspect of the invention there is provided an isolated nucleic acid molecule encoding a mature polypeptide expressible by the
Streptococcus pneumoniae
0100993 strain contained in the deposited strain.
A further aspect of the invention there are provided isolated nucleic acid molecules encoding response regulator, particularly
Streptococcus pneumoniae
response regulator, including mRNAs, cDNAs, genomic DNAs. Further embodiments of the invention include biologically, diagnostically, prop
Deibert Thomas S.
Duffy Patricia A.
Gimmi Edward R
King William T.
SmithKline Beecham Corporation
LandOfFree
Compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compounds will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2472400