Compound method for disinfection of liquids

Liquid purification or separation – Processes – Utilizing electrical or wave energy directly applied to...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

205701, 205742, C02F 1461, A61L 202

Patent

active

060398833

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to the disinfection of liquids, especially those containing microbes, and combines the use of chemical disinfectants with the application of high potential gradients to a liquid medium containing microbes.
2. Description of the Related Art
High potential gradients applied to a medium containing microbes can destroy or deactivate the microbes. This has been known for at least fifty years. Sale and Hamilton were the first to publish definitive experimental data on this effect and to demonstrate that the effect was evidently due to the potential gradient per se, and not the result of heating or the passage of electric current. See, for example, A. J. H. Sale and W. A. Hamilton, Effect of High Electric Fields on Microorganisms I. Killing of Bacteria and Yeasts, Biochimica & Biophysica Acta 148, 781 (1967); W. A.Hamilton and A. J. H. Sale, Effects of High Electric Fields on Microorganisms II. Mechanism of Action of the lethal Effect, Biochimica & Biophysica Acta 148, 789 (1967); A. J. H. Sale and W. A. Hamilton, Effect of High Electric Fields on Microorganisms III. Lysis of Erythrocytes and Protoplasts, Biochimica & Biophysica Acta 163, 37 (1968). Subsequent microbiological studies by Benz and Lauger (see, for example, Roland Benz and P. Lauger, Kinetic Analysis of Carrier-Mediated Ion Transport by the Charge-Pulse Techniaue, Journ. Membrane Biol. 27, 171 (1976)), Zimmermann et al. (see, for example, Ulrich Zimmermann, J. Vienken & Gunther Pilwat, Development of drug Carrier Systems: Electrical Field-Induced Effects in Cell Membranes, Bioelectrochem. & Bioenergetics 7, 553 (1980); Ulrich Zimmermann, Peter Scheurich, Gunther Pilwat & Roland Benz, Cells with Manipulated Functions: New Perspectives for Cell Biology, Medicine & Technology, Angewandte Chemie 93, 332 (1981)), and Benz et al. (see, for example, Roland Benz, F. Beckers & Ulrich Zimmermann, Reversible Electrical Breakdown of Lipid Bilayer Membranes: A Charge-Pulse Relaxation Study, Journ. Membrane Biol. 48, 181 (1979); Roland Benz & Ulrich Zimmermann, Pulse-Length Dependence of the Electrical Breakdown in Lipid Bilayer Membranes, Biochimica & Biophysica Acta 597, 637 (1980)), showed that high potential gradients induce porosity in the membrane of a biological cell. Below a certain value of applied potential gradient--this critical value being of the order of 10 kV/cm--the induced porosity is reversible: That is, when the gradient is removed, the membrane regenerates its properties and the cell is not permanently affected. Whereas, for values of gradient above the critical value, porosity rapidly increases with increase in the applied gradient, and there is an increasing probability that the cell will be destroyed.
Various systems for applying high potential gradients to a medium containing microbes are disclosed in U.S. Pat. No. 5,048,404 to Bushnell et al. and in U.S. Pat. No. 5,235,905 to Bushnell et al.


SUMMARY OF THE INVENTION

As porosity of the membrane increases, there is an increase in the exchange of fluids between the interior of the cell and the medium which surrounds the cell. If a chemical disinfectant is present in the medium, this disinfectant will be carried into the cell with consequent adverse effect on cell viability. Potential gradients, by themselves, adversely affect a cell's viability. When the applied gradient exceeds the critical value and irreversible changes occur, both membrane porosity and the probability that the cell will be destroyed increase rapidly with increasing potential gradient. For these reasons, combining the high-potential gradient process with treatment by addition of small amounts of chemical disinfectant results in a process of high effectiveness.
Accordingly, in accordance with the invention, the liquid, contaminated with microbes, is contained within a processing chamber. Within this chamber are electrodes which themselves constitute part of the envelope of the contained volume of liquid to be processed. In this way, all fluid i

REFERENCES:
patent: 4384943 (1983-05-01), Stoner et al.
patent: 4492618 (1985-01-01), Eder
patent: 4769119 (1988-09-01), Grundler
patent: 5048404 (1991-09-01), Bushnell et al.
patent: 5130032 (1992-07-01), Sartori
patent: 5235905 (1993-08-01), Bushnell et al.
patent: 5326530 (1994-07-01), Bridges
Dec.1990 IEEE Industry Applications Meeting 1712 90.
Copy of the International Search Report dated Jan. 8, 1997.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compound method for disinfection of liquids does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compound method for disinfection of liquids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compound method for disinfection of liquids will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-727671

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.