Compound for use as a mineral fibre binder and process for...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From carboxylic acid or derivative thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S332000, C528S353000, C428S221000, C428S357000, C428S361000, C524S081000, C524S401000

Reexamination Certificate

active

06706853

ABSTRACT:

The invention relates to a compound or salts thereof suitable for use as a binder for mineral fibres, i.e. man made vitreous fibres (MMVF), for example glass slag or stone wool, i.e mineral wool, in particular stone wool, a binder composition comprising such a compound, a process for providing said compound and composition, a mineral fibre product provided with such a binder and the use of said compound and composition as a mineral fibre binder.
Phenol and formaldehyde resins which are mainly used as binders for glass or stone wool are toxic.
During application and curing of the benders, after provision thereof to the mineral fibres, phenol, formaldehyde and ammonia are released. From an environmental point of view this is undesirable.
Furthermore during application, mostly by spraying, of the binder onto the spun glass or stone fibres a large amount of binder is lost, which is almost impossible to recover for re-use.
According to a first aspect of the present invention there is provided a compound according to the claims 1-12.
The inventors have found that such a compound is particularly suitable for use as a binder for mineral wool products, whereby since the compound is preferably non-polymeric and has a low molecular weight, costs are minimized with respect to polymeric binders, and the handling of such non-polymeric compounds is straightforward.
Since the compound is soluble in water no further solublizing agents are required in order to provide a soluble binder having a desired viscocity for adhering to the mineral fibres.
Moreover on applying or curing the compound according to the present invention, no toxic materials are released into the environment.
The compounds according to the present invention also have desirable properties with respect to hardness, scratch resistance, chemical resistance, mechanical properties and adhesive properties once cured.
In formula (I) the R-groups, with the exception of R
9
can form either together or with the adjacent carbon atoms, or with the carbon atoms on B or Y a cyclo aliphatic group.
Preferably, B is a 1,2-ethylene, 1,2-ethylidene, 1,3-propylene, 1,2-cyclohexyl, 1,2-phenylene, 4-carboxyl-1,2-phenylene, 1,3-phenylene, 1,4-phenylene and/or 1,2 cyclohex-4-enyl radical.
B can be saturated or unsaturated.
B can be substituted with for instance a (C
1
-C
12
) alkyl group which is saturated or unsaturated.
B can form a part of a polymer. Such polymers can be obtained by the reaction of anhydride function polymers with a &bgr;-hydroxy alkylamine or a derivative thereof.
Anhydride functional polymers can for instance be obtained by a radical polymerisation of Maleic anhydride with styrene and with (meth)acrylate monomers.
Maleic anhydride can also be grafted onto unsaturated compounds. A reaction between maleic anhydride and oils, such as for instance linseed oil, results in products, which are called maleinised oils, which may be grafted onto unsaturated compounds, used as a comonomer or mixed into the compounds.
If B does not form part of a polymer, the molecular weight of the compounds, is less than 1000 and preferably less than 600.
According to a second aspect of the present invention, there is provided a curable composition suitable for use as a binder for mineral fibers, according to claims 13-17.
Such a composition exhibits the properties as described above for the compound.
The composition may contain more than 10 wt %, for example more than 25 wt %, and preferably 50 wt % or more of the compound according to claims 1-12.
Standard binding additives can improve the binder, examples of such additives include: aminotropyl siloxane to improve the adhesion on glass, stabilizers to prevent thermal or UV degradation and surface-active compounds. Fillers, such as clay, silicates, magnesium sulfate and pigments, such as titanium oxide, can also be applied, as well as hydrophobising agents such as fluorine compounds, oils, minerals and silicone oil (reactive or ion reactive).
The composition may also be applied in combination with other binder compositions such as for instance phenol-formaldehyde resins.
A very good binding strength is achieved when an accelerator is added to the composition, a preferred accelerator being sodium hypophosphite.
Furthermore since the binder composition is preferably composed of low molecular weight compounds, it has a viscosity at high concentrations which is lower than polyacrylic binders for example.
This is advantageous since on curing, following an initial flash evaporation, any water present usually evaporates. Before curing the composition still has a viscosity which allows it to be sprayed onto the mineral fibres and adhere thereto once sprayed.
Since the composition is intrinsically water soluble, no solublizing agents need to be provided thereto in order to enable application of the composition to the mineral fibers, the viscosity of the composition being high enough to adhere well to the mineral fibers and low enough, as stated above to enable sprayability. A decrease in the viscosity can be achieved by heating the composition to a temperature below which an eventual condensation reaction takes place.
According to a third aspect of the present invention there is provided a compound according to claim 18.
According to a fourth aspect of the present invention there is provided a process for providing a compound suitable for use as a binder for mineral fibers according to the claims 19-28, see FIG.
7
.
For a schematic illustration of the reaction, for example, between tetrahydro pthalic anhydride and diethanolamine see FIG.
1
.
The reaction between the anhydride and the alkanolamine can proceed without a solvent, in water or in an organic solvent. Preferably, the reaction starts in the presence of <40 weight % of water compared to the reactants.
The distillation of the water can, if desired, proceed at 1 bar, under vacuum or azeotropically.
The equivalent ratio anhydride: alkanolamine lies generally between 1, 8:1, 0 and 1, 0:1, 8. Preferably, this ratio lies between 1, 5:1, 0 and 1:1, 5.
In case a high crosslink density is desired, di- or trialkanolamines or carboxylic acid functional anhydrides can be applied as starting materials.
Another aspect of the present invention relates to the compound obtainable via this process.
The reaction of diethanolamine with an activated ester, such as a cyclic anhydride, can also result in an ester amine.
However, the same product can also be formed out of the &bgr;-hydroxyalkylamide because of an internal rearrangement. The inventors have measured that the &bgr;-hydroxyalkylamide and the ester-amine form an equilibrium with each other usually in a 85/15 ratio. In case the ester-amine reacts further with a cyclic anhydride another &bgr;-hydroxyalkylamide is formed, see
FIG. 2
, for example.
The applied compound can also be obtained by the reaction between an alkanolamine, such as for instance described above and a compound having one carboxylic acid group and a activated carboxylic acid group.
The compound having a carboxylic acid group and an activated carboxylic acid group is preferably a compound according to the following formula:
In which
B has the meaning as referred to in claims 5 and 7.
L=
In which R
7
is a (C
1
-C
12
) branched or linear alkyl group.
Examples of appropriate compounds with one carboxylic acid group and one activated carboxylic acid groups are alkyl esters, such as for instance mono (m) ethyladipate and mono (m) ethylsebacate. Activated carboxylic acid groups are for instance anhydrides and thioesters.
The compound applied in the invention can also be obtained by reaction between a cyclic anhydride, such as described above, and an alcohol after which the obtained reaction product in situ reacts with an alkanolamine.
Examples of appropriate alcohols are (C
1
-C
10
) alcohols. Preferably methanol or ethanol are applied.
Another binder composition according to the invention can be obtained by reacting linear polyanhydrides with alkanolamines or derivatives.
It is also possible that the carboxylic acid groups and the &bgr;-hyd

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compound for use as a mineral fibre binder and process for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compound for use as a mineral fibre binder and process for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compound for use as a mineral fibre binder and process for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3241235

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.