Compositions of solvents and high concentrations of nucleic...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S004100, C536S022100, C536S023100, C536S025410, C530S300000, C530S333000, C530S350000, C544S116000, C544S218000

Reexamination Certificate

active

06331618

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to the field of nucleic acid analogs with uncharged, neutral backbones. Specifically, this invention is directed to aqueous mixtures of polar aprotic solvents that enable high-concentration dissolution of peptide nucleic acids (PNA).
REFERENCES
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. “Molecular Biology of the Cell, Second Edition”, Garland Publishing, Inc., New York, 1989.
Andrus, A. “Chemical methods for 5′ non-isotopic labelling of PCR probes and primers” (1995) in PCR 2:
A Practical Approach,
Oxford University Press, Oxford, pp. 39-54.
Atkins, P. W. “Physical Chemistry”, W. H. Freeman and Co., San Francisco, Calif., 1978, pp. 746.
Beaucage, S. and Iyer, R. “Advances in the synthesis of oligonucleotides by the phosphoramidite approach”, Tetrahedron 48:2223-2311 (1992).
Blackburn, G. and Gait, M. Eds. “DNA and RNA structure” in
Nucleic Acids in Chemistry and Biology,
2
nd
Edition, (1996) Oxford University Press, pp. 15-81.
Blanchard, Alan P. “Solvent for biopolymer synthesis, solvent microdroplets and apparatus employing inkjet pump for automated solid-phase synthesis of biopolymers” PCT Int. Appl., WO 9841531, Intl. publication date Sep. 24, 1998.
Buchardt, O., Egholm, M., Nielsen, P., and Berg, R. “Peptide Nucleic Acids”, WO 92/20702, Intl. Pub. Date Nov. 26, 1992.
Caruthers, M. and Beaucage, S. “Phosphoramidite compounds and processes”, U.S. Pat. No. 4,415,732, issued Nov. 15, 1983.
Caruthers, M. and Matteucci, M. “Process for preparing polynucleotides”, U.S. Pat. No. 4,458,066, issued Jul. 3, 1984.
CRC Handbook of Chemistry and Physics, 63rd Edition, Weast, R. C., Editor, CRC Press, Inc., Boca Raton, Fla., pp. E-59-62.
Dueholm, K., Egholm, M., Behrens, C., Christensen, L., Hansen, H., Vulpius, T., Petersen, K., Berg, R., Nielsen, P. and Buchardt, O. “Synthesis of peptide nucleic acid monomers containing the four natural nucleobases: thymine, cytosine, adenine, and guanine and their oligomerization”, J. Org. Chem. 59:5767-73 (1994).
Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S., Driver, D., Berg, R. and Kim, S. “PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen bonding rules”, Nature 365:566-68 (1993).
Englisch, U. and Gauss, D. “Chemically modified oligonucleotides as probes and inhibitors”, Angew. Chem. Int. Ed. Engl. 30:613-29 (1991).
Gildea, B., Casey, S., MacNeill, J., Perry-O'Keefe, H., Sorensen, D and Coull, J. “PNA solubility enhancers”, Tetrahedron Letters 39:7255-58 (1998).
Goodnow, R. and Tam, S. “Antisense Oligomers”, U.S. Pat. No. 5,780,607, issued Jul. 14, 1998.
Hermanson, G. in
Bioconjugate Techniques
(1996) Academic Press, San Diego, pp. 40-55, 643-671.
Kricka, L. in
Nonisotopic DNA Probe Techniques
(1992), Academic Press, San Diego, pp. 3-28.
Kutyavin, I., Lukhtanov, E., Gamper, H. and Meyer, R. “Covalently linked oligonucleotide minor groove binder conjugates”, WO 96/32496, Intl. Publ. Date Oct. 17, 1996.
Lee, L., Spurgeon, S., Rosenblum, B. “Energy transfer dyes with enhanced fluorescence”, U.S. Pat. No. 5,800,996, issued Sep. 1, 1998.
Livak, K., Flood, S. and Marmaro, J. “Method for Detecting Nucleic Acid Amplification Using Self-Quenching Fluorescence Probe”, U.S. Pat. No. 5,538,848, issued Jul. 23, 1996.
Livak, K., Flood, S., Marmaro, J. and Mullah, K. “Self-quenching fluorescence probe”, U.S. Pat. No. 5,723,591, issued Mar. 3, 1998.
McMurry, J.
Organic Chemistry
(1984) Brooks/Cole Publishing Co., Monterey, Calif., pp. 313-15.
Menchen, S., Lee, L., Connell, C., Hershey, N., Chakerian, V., Woo, S. and Fung, S. “4,7-Dichlorofluorescein dyes as molecular probes”, U.S. Pat. No. 5,188,934, issued Feb. 23, 1993.
Meyer, R. “Incorporation of modified bases in oligonucleotides” in
Protocols for Oligonucleotide Conjugates,
Ed. S. Agrawal (1994) Humana Press, Totowa, N.J., pp. 73-92.
Miller, P. and Ts'O, P. “Synthesis of oligo-2′-deoxyribonucleoside methylphosphonates” in
Oligonucleotides and Analogues,
Ed. F. Eckstein (1991) IRL Press, Oxford.
Nielsen, P., Egholm, M., Berg, R. and Buchardt, O. “Sequence-selective recognition of DNA by strand displacement with a thymidine-substituted polyamide”, Science 254:1497-1500 (1991).
Oliver, R., Ed. “HPLC of Macromolecules, A Practical Approach, 2nd Edition”, Oxford University Press, Oxford, (1999).
Reichardt, C.
Solvents and Solvent Effects in Organic Chemistry,
2nd Edition, VCH mbH, Weinheim, Germany (1990), pp. 407-411.
Rickwood, D. and Hames, B. Eds. “Gel Electrophoresis of Nucleic Acids, A Practical Approach, 2nd Edition”, Oxford University Press, Oxford (1990).
Schmidt, J., Nielsen, P., and Orgel, L. “Separation of “Uncharged”oligodeoxynucleotide analogs by anion-exchange chromatography at high pH”, Analytical Biochemistry 235:239-41 (1996).
Summerton, J. and Weller, D. “Uncharged morpholino-based polymers having achiral intersubunit linkages”, U.S. Pat. No. 5,034,506, issued Jul. 23, 1991.
Summerton, J. and Weller, D. “Sequence-specific binding polymers for duplex nucleic acids”, U.S. Pat. No. 5,405,938, issued Apr. 11, 1995.
Tyagi, S. and Kramer, F. “Molecular Beacons: Probes that fluoresce upon hybridization”, Nature Biotechnology, 14:303-08 (1996).
Van der Laan, A., Brill, R., Kuimelis, R., Kuyl-Yeheskiely, E., van Boom, J., Andrus, A. and Vinayak, R. “A convenient automated solid-phase synthesis of PNA-(5′)-DNA-(3′)-PNA chimera”, Tetrahedron Lett. 38:2249-52 (1997).
Vinayak, R., van der Laan, A., Brill, R., Otteson, K., Andrus, A., Kuyl-Yeheskiely, E. and van Boom, J. “Automated chemical synthesis of PNA-DNA chimera on a nucleic synthesizer”, Nucleosides & Nucleotides 16:1653-56 (1997).
Walsh, W. and Waldrop, M. “Process for making hot-melt adhesives using water-soluble substituted lactam/polymer solutions as feedstocks”, U.S. Pat. No., 5,852,083.
BACKGROUND
Nucleic acid analogs, including peptide nucleic acids (PNA), internucleotide analogs, and nucleobase analogs, are often studied and characterized by analytical tests and methods at substantially higher concentrations than physiological concentrations under metabolic conditions (Alberts, 1989). Some tests, methods and experiments that may require high concentrations of nucleic acid analogs are intracellular antisense inhibition of transcription and translation of sense DNA and mRNA, labelling of nucleic acid analog reactions, and attaching nucleic acid analogs to surfaces of other heterogeneous media. Analytical methods that may require high concentrations of nucleic acid analogs are gel electrophoresis (Rickwood, 1990), high-performance liquid chromatography (HPLC) (Oliver, 1998), primer extension reactions, polymerase chain reaction (PCR), mass spectroscopy, nuclear magnetic resonance (NMR) and X-ray crystallization.
Nucleic acid analogs with uncharged, neutral backbones, such as peptide-nucleic acids (PNA) (Buchardt, 1992), morpholino-carbamate (Summerton, 1991), methyl phosphonate oligonucleotides (Miller, 1991), and others (Goodnow, 1998) have the advantage of nuclease-resistance for prolonged in vivo stability but are notoriously difficult to solubilize and maintain in aqueous solution, particularly at neutral pH. Such uncharged analogs lack the solubility-facilitating phosphate anions of DNA and RNA. PNA sequences with a N-(2-aminoethyl)-glycine polymer backbone and high purine nucleobase content can be especially difficult to solubilize (Nielsen, 1991). Useful concentrations of PNA sequences with contiguous thymidine nucleobases are also sometimes difficult to achieve. Typically, PNA are dissolved in low pH, primarily aqueous solutions. PNA nucleobases are basic and become protonated and charged at low pH, increasing their solubility under acidic conditions. For the most part, nucleic acid analogs such as PNA are not appreciably soluble in neutral, aqueous conditions. If solution is achieved at neutral pH by elevated temperature, agitation, or other techniques, nucleic acid analogs are prone to precipitation when allowed to stand at or below room temperature. F

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions of solvents and high concentrations of nucleic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions of solvents and high concentrations of nucleic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions of solvents and high concentrations of nucleic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2557622

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.