Compositions for increasing athletic performance in mammals

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06429198

ABSTRACT:

The present invention relates to compositions and methods for increasing the athletic performance of mammals. Administration of the compositions of the invention provides increased power output and reduced fatigue.
BACKGROUND OF THE INVENTION
It is well known that the energy coinage of the cell is adenosine triphosphate (ATP). During anabolism, the energy derived from the metabolism of nutrients is transferred to high energy phosphate bonds of ATP. The energy in these bonds is expended during the energy consumption phase. An important and “costly” expenditure, in which ATP is rapidly cycled, is that required for muscular contraction.
The energy buildup steps occur within the muscle cell during two basic processes. Oxidative phosphorylation replenishes ATP by the breakdown of circulating fatty acids, glucose and intramuscular glycogen and triglycerides. Anaerobic phosphorylation provides ATP from creatine phosphate, circulating glucose and intramuscular glycogen via kinase reactions such as the myokinase reaction.
U.S. Pat. No. 5,714,515 describes the administration of compositions containing pyruvate, an intermediate breakdown product of glucose, to enhance recovery from surgical or accidental trauma, shock, exhaustion due to prolonged physical effort and other indications. U.S. Pat. No. 5,709,971 discloses the administration of other glucose metabolites, namely glyceraldehyde-3-phosphate, phosphoenolpyruvate and 3-phosphoglycerate, in combination with nicotineadeninedinucleotide, coenzyme A and acetyl coenzyme A.
A different approach to increasing the substrates available for production of ATP that has been employed is the administration of the amino acid L-carnitine, which is thought to enhance the transport and absorption of fatty acids into mitochondria, the site of oxidative phosphorylation. U.S. Pat. No. 4,968,719 describes the use of L-carnitine for the treatment of peripheral vascular diseases.
Regardless of whether the high energy phosphate bonds of ATP are generated oxidatively or anaerobically, and irrespective of the substrates used for its generation, ATP cannot be synthesized unless the precursors of the ATP molecule itself are available. The synthesis of the ATP molecule can occur by de novo or salvage pathways.
In the synthesis of ATP via the nucleotide salvage pathway, the nucleotide precursors that may be present in the tissue are converted to AMP and further phosphorylated to ATP. Adenosine is directly phosphorylated to AMP, while xanthine and inosine are first ribosylated by 5-phosphorihosyl-1-pyrophosphate (PRPP) and then converted to AMP. Ribose is found in the normal diet only in very low amounts, and is synthesized within the body by the pentose phosphate pathway. In the de novo synthetic pathway, ribose is phosphorylated to PRPP, and condensed with adenine to form the intermediate adenosine monophosphate (AMP). AMP is further phosphorylated via high energy bonds to form adenosine diphosphate (ADP) and ATP.
Synthesis by the de novo pathway is slow. Normally, AMP synthesis is believed to occur mainly by the salvage pathway, however, following anoxia or ischemia, the activity of the de novo pathway is increased.
During energy consumption, ATP loses one high energy bond to form ADP, which can be hydrolyzed to AMP. AMP and its metabolites adenine, hypoxanthine and inosine are freely diffusible from the muscle cell and may not be available for resynthesis to ATP via the salvage pathway.
In U.S. Pat. No. 4,719,201, it is disclosed that when ATP is hydrolyzed to AMP in cardiac muscle during ischemia, the AMP is further metabolized to adenosine, inosine and hypoxanthine, which are lost from the cell upon reperfusion. In the absence of AMP, rephosphorylation to ADP and ATP cannot take place. Since the precursors were washed from the cell, the nucleotide salvage pathway is not available to replenish ATP levels. It is disclosed that when ribose is administered via intravenous perfusion into a heart recovering from ischemia, recovery of ATP levels is enhanced.
Pliml, in German Patent No. 4,228,215, discloses that oral ribose was effective in treating cardiac insufficiency and hypovolemic shock in humans.
The advantage of the administration of pentoses such as ribose or xylitol to prevent pain and stiffness of skeletal muscle in patients suffering from the autosomal recessive genetic disease myoadenylate deaminase (MAD) deficiency was shown by Zöllner et al. (Klinische Wochenshritt 64: 1281-1290, 1986.) This disease is characterized by permanent muscular hypotonia, excessive muscular weakness, fatigue, soreness, burning pain, stiffness and cramps. These symptoms are considered to be consequences of the interruption of the ATP cycle. Dephosphorylation of ATP is inhibited by the accumulation of AMP, resulting in less available energy to effect muscle contraction and relaxation. However, even though symptoms of MAD-deficient patients were relieved by administration of ribose, the intracellular levels of adenine nucleotides remained abnormally high and normal volunteers experienced no beneficial effect from ribose administration. (Gross, Reiter and Zöllner, Klinische Wochenshritt, 67:1205-1213, 1989.)
Tullson et al. (Am. J. Physiol., 261 (Cell Physiol. 30) C343-347, 1991) cite references showing that high intensity exercise increases degradation and subsequent loss of AMP from isolated muscle. They further disclose that adding ribose to the perfusate in a rat hindquarter preparation increases the de novo synthesis of AMP in sedentary muscle, but does not eliminate the decline in de novo synthesis seen in contracting muscle.
Camiglia, et al, U.S. Pat. No. 4,871,718, disclose th at when a complex mixture comprising amino acids, metabolites, electrolytes and ribose or a precursor of ribose, was administered orally as a dietary supplement to race horses, increases in intracellular ATP levels and physical performance result. The performance evaluation was anecdotal, based on the subject's performance history. When the composition of the components of the supplement is calculated, it is found that the daily supplementation contains 100-200 g protein, 75-150 g simple carbohydrates and only 2-4 g ribose, an insignificant amount in terms of physiological effect on a mammal weighing approximately 1000 pounds.
Thus, a continuing need exists for simple and effective methods to enhance athletic performance in mammals.
SUMMARY OF THE INVENTION
The present invention provides compositions and methods of increasing the athletic performance in a mammal such as a human or equine athlete. Specifically, a pentose such as D-ribose is given orally before, during and/or after a period of exercise, in amounts effective to increase the athletic performance of the mammal. Mammals given pentose as a nutritional supplement are able to exercise longer, i.e., to achieve and maintain a higher intensity of physical activity with reduced fatigue, than those not given ribose. Preferably, the pentose is taken at a time such that circulating levels of the administered pentose are available to coincide with high energy demands, that is, before, during and after the exercise. More preferably, pentose is taken daily whether or not the mammal is exercising strenuously. More preferably, ribose is taken in combination with other nutritional supplements, most preferably with creatine.
Nutritional supplements that enhance the pentose benefit are also provided. Such compositions preferably comprise at least one of magnesium (Mg
+2
), creatine, pyruvate, L-carnitine, stimulants, energy pathways intermediates and optionally at least one vasodilating substance. Of these, creatine is most preferred in combination with ribose, Mammals undergoing high energy demand and loss of fluids also benefit from a composition that further comprises electrolytes and an additional energy source such as carbohydrate.


REFERENCES:
patent: 4228215 (1980-10-01), Hein, III et al.
patent: 4871718 (1989-10-01), Carniglia
patent: 4968719 (1990-11-01), Brevetti
patent: 5292538 (1994-03-01), Paul et al.
patent: 5391550 (1995-02-01)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions for increasing athletic performance in mammals does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions for increasing athletic performance in mammals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions for increasing athletic performance in mammals will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2884017

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.