Compositions for imparting desired properties to materials

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S502000, C524S503000, C524S517000, C524S519000, C524S521000, C524S522000, C524S523000, C524S524000, C524S527000

Reexamination Certificate

active

06586520

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to aqueous compositions for imparting a variety of characteristics to materials. For example, aqueous compositions of the present invention include compositions for coating/barrier layers, replacements/extenders for latex, and cross linkers for a variety of substances, as well as in adhesives/binders. Such compositions can impart various desired properties to substrates coated and/or impregnated therewith. Aqueous compositions of the invention are especially suitable for coating substrates, such as physiological substrates, porous substrates, cellulose substrates, textiles, and building materials, such as wood, metal, and glass. The aqueous composition of the present invention can also be used in inks, dye fixatives, adhesives, sealants, cellulosic products, personal care products such as cosmetics and hair styling products, resins, paint, coatings, and non-woven structures to provide adhesion, delivery, surface modification, strength and/or texture, and protection from the effects of liquids, and vapor and gases. A non-woven structure can be a sheet, web, or batt of directionally or randomly oriented fibers of natural and/or man-made fibers or filaments, bonded by friction, and/or cohesion and/or adhesion, excluding paper and products which are woven, knitted, tufted, stitch bonded, or felted by wet milling or not additionally needled, or that are bonded to each other by any techniques known in the art. An example of a non-woven structure includes a non-woven fabric which is a flat, flexible porous sheet structure produced by interlocking layers or networks of fibers, filaments or film-like filamentary structure.
In addition, the composition of the present invention is suitable for use in metal conversion coatings to enhance corrosion resistance of and paint adhesion to metal surfaces.
The present invention also includes products comprising such compositions as well as methods of producing such products.
2. Background of the Invention and Related Art
Materials can be treated with a variety of compositions to impart desired properties thereto.
Substrates are often coated with a coating composition to impart desired characteristics to the substrate, including the surface thereof.
Various substrates have been coated or otherwise treated with coating compositions to impart desired characteristics to the substrate, including the surface thereof. For example, a wide variety of building and finishing materials exists, which are employed in construction of static structures, such as residences and other buildings, and commercial structures, schools, public facilities, and the like. Many such materials are based on non-woven materials. Further, many such materials are coated and/or impregnated with a surface finish coating, either during manufacture, prior to installation, or post-installation, or in a combination of the above situations.
Such materials, particularly ceiling tiles, have been provided with prime coats comprising ethylene-vinyl chloride copolymer emulsions. Particularly suitable materials include those available from Air Products and Chemicals, Inc., of Allentown, Pa., under the trade name AIRFLEX®. Specific examples of such emulsions are disclosed in U.S. Pat. No. 4,673,702 to IACOVIELLO, and U.S. Pat. No. 4,962,141 to IACOVIELLO, et al., both assigned to Air Products and Chemicals, Inc., Allentown, Pa., both of which are hereby incorporated by reference as though set forth in full herein.
Paper for certain applications has been customarily strengthened with resins to impart strength thereto when the paper is wet. Such resins are commonly referred to as “wet strength resins.” A frequently employed wet-strength resin for use in papers is that of the broad class of polyamidoamine-epihalohydrin resin polymers for resins. Such resins include those marketed under the trademark KYMENE® by Hercules Incorporated, Delaware. Such resins, and processes for their manufacture, are disclosed in, for example, U.S. Pat. Nos. 2,926,116 and 2,926,154, both to KEIM; U.S. Pat. No. U.S. Pat. 5,614,597 to BOWER; U.S. Pat. Nos. 5,644,021 and 5,668,246, both to MASLANKA; all assigned to Hercules Incorporated, all of which patents are hereby incorporated by reference as though set forth in full herein.
U.S. Pat. No. 4,859,527 discloses cellulosic non-woven products of enhanced water and/or solvent resistance obtained by pre-treatment of the cellulosic fibers. In some embodiments, this patent discloses that suitable pre-treatment agents include poly(aminoamide) epichlorohydrin resins. Suitable overcoat binders are disclosed as including ethylene-vinyl chloride-acrylamide polymers. Specific examples of the pre-treatment agents include KYMENE®, and HERCOBOND®, including HERCOBOND® 5100; overcoat binders include binders such as AIRFLEX® “EVCI” co-polymers (AIRFLEX® 4500).
There has also been a need for flexible coatings such as pretreatments and precoats on various substrates. Such substrates on which a need for a flexible coating exists include substrates subject to bending and flexing. Such substrates also can include those which can be cut. Ceiling tiles are exemplary of such substrates.
Coating compositions comprising poly(aminoamide) epihalohydrin resins such as KYMENE and latices such as AIRFLEX are used to treat ceiling tiles as disclosed in co-pending application Ser. No. 09/348,346, which is hereby incorporated by reference as though set forth in full herein.
Nail polish is another example of a coating for substrates. Aqueous-based nail polishes are disclosed in commonly assigned co-pending application Ser. No. 09/348,345, which is hereby incorporated by reference as though set forth in full herein. Nail polish is most commonly a colored liquid that dries, not unlike paint, into a hard, shiny coating. Nail polishes sold as articles of commerce are typically solutions and/or dispersions in an organic solvent, such as toluene or acetone.
Conventional nail polishes generally employ nitrocellulose as the film former. Typical formulations are disclosed in “Formulating Nail Lacquer”, B. Albert, Drug and Cosmetic Industry, Vol. 48, (Nov. 1998), which is hereby incorporated by reference as though set forth in full herein, for its background information on such nail formulations.
U.S. Pat. No. 5,120,259 discloses a water-based nail polish consisting of at least one polyurethane and/or polyurethane copolymer in dispersed form as a binder, with a thickener and acrylated-styrene copolymer. The acrylated-styrene copolymer is employed to increase hardness of the dried coating.
U.S. Pat. No. 5,716,603 discloses a nail polish composition comprising an aqueous solution containing an acrylic resin cross linked with a difunctional acrylated urethane oligomer. This patent notes that nail polish formulations contain other additives, such as plasticizers and coalescents to modify the film and/or provide other desired or functional properties such as gloss, uniform color or resistance to chipping.
Changes in the overall formulation of substrate coatings have been attempted. For example, attempts have been made to improve physical properties such as water resistance, durability, scratch resistance, etc. well as good appearance, including finish color. However, there has been a continuing need for improvement.
Substrates are often coated with a coating composition to impart desired characteristics to the substrate, including the surface thereof. Porous building materials are illustrative of such substrates. A wide variety of building and finishing materials exists, which are employed in construction of static structures, such as residences and other buildings, and commercial structures, schools, public facilities, and the like. Many such materials are based on non-woven webs. Further, many such materials are coated and/or impregnated with a surface finish coating, either during manufacture, prior to installation, or post-installation, or in a combination of the above situations.
High grade accoustical ceiling tile is marketed for

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions for imparting desired properties to materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions for imparting desired properties to materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions for imparting desired properties to materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3030874

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.