Compositions containing polyalkene-substituted amine and...

Fuel and related compositions – Liquid fuels – Organic nitrogen compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C044S443000

Reexamination Certificate

active

06348075

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to compositions containing a polyalkene-substituted amine and a polyether alcohol. The present invention also relates to fuel compositions containing an intake valve deposit inhibiting amount of said composition.
2. Description of the Related Art
It is well known to those skilled in the art that internal combustion engines form deposits on the surface of engine components, such as carburetor ports, throttle bodies, fuel injectors, intake ports, and intake valves, due to the oxidation and polymerization of hydrocarbon fuel. Deposits also form in the combustion chamber of an internal combustion engine as a result of incomplete combustion of the mixture of air, fuel, and oil. These deposits, even when present in relatively minor amounts, often cause noticeable driving problems, such as stalling and poor acceleration. Moreover, engine deposits can significantly increase an automobile's fuel consumption and production of exhaust pollutants. Specifically, when the gasoline used in a given engine is of a constant octane number, the power output decreases when deposits are formed. In order to maintain the power output at a predetermined desired level, it then becomes necessary to increase the octane number of the fuel over the course of time. This Octane Requirement Increase (ORI) is undesirable. Therefore, the development of effective fuel detergents or deposit control additives to prevent or control such deposits is of considerable importance, and numerous such materials are known in the art.
Two general classes of additives are commercially known. One class comprises hydrocarbyl-substituted amines such as those derived from reacting halogenated olefin polymers and amines. Typical examples of this class are polybutenyl amines. Another class of additives comprises the polyetheramines. Usually, these are “single molecule” additives, incorporating both amine and polyether functionalities within the same molecule. A typical example is a carbamate product comprising repeating butylene oxide units under the trade name “Techron™” marketed by the Oronite Division of Chevron Chemical Company.
In some cases, the polyetheramines are preferred as the oxygenation (from the polyether functionality) is thought to lower particulate matter and nitrogen oxide (NOx) emissions and combustion chamber deposits. In addition, polyetheramines require little or no additional fluidizer to pass certain industry mandated valve stick requirements, resulting in a more economical final package. Polyisobutenyl amines, on the other hand, do require the addition of fluidizer to pass valve stick requirements and in addition are perceived to cause higher combustion chamber deposits than the fuel alone.
Valve sticking is an undesirable effect that can occur, particularly in cold weather conditions, if an improper or insufficient amount of fluidizer is used with the polybuteneamine. An important property of fuel additives, in addition to keeping the intake valves clean, is the retention of their basic mechanical function. Although deposit control agents based on polybuteneamines are effective in providing an excellent cleaning action to intake valves, these materials can be deposited in the course of time in the form of a thin layer on the valve head and valve stem (valve guide) of the intake valves, owing to their low volatility (high boiling point). Under certain driving conditions, and especially at low outside temperatures, the tacky layer may become so viscous that functioning of the valves is adversely affected. This may lead to compression losses in individual cylinders and, in unfavorable cases, to engine failure as a result of the valves sticking.
Hence, advantageous fuel additives are those which as a result of their cleaning effect, form completely desirable, thin protective films in the intake systems (valve head and valve stem); however, the viscosity of these protective films at low temperatures must not be too high or the protective films be too tacky so that engine failure occurs, i.e., the intake valves remain sticking as a result of the very tacky valve stem.
It has now been discovered that certain polyalkene-substituted amines in combination with certain polyether alcohols (hydrocarbyl-substituted poly(oxypropylene) monool) provide exceptional reduction in intake valve deposit formation. Although combinations of polyether alcohols and nitrogen compounds have been known in general to be useful as deposit control agents, the present compositions containing a certain class of polyether alcohols in combination with certain polyalkeneamines have been found to be particularly effective in providing an unexpected and synergistic improvement in the control of intake valve deposits. The present compositions have also been found to provide an unexpected improvement in valve stick performance (i.e., they do not cause intake valves to stick due to high viscosity at low temperature).
U.S. Pat. No. 5,298,039, Mohr et al., Mar. 29, 1994, discloses a composition comprising an internal combustion fuel and a combination of
a) from 10 to 5,000 ppm of a nitrogen-containing detergent component which is or contains a polyisobutylamine and
b) from 10 to 5,000 ppm of an alkoxylate of the following formula
where R
1
and R
2
independently of one another are each branched or straight-chain C
6
-C
30
-alkyl, one of the two radicals R
3
is methyl and the other is hydrogen and n is from 1 to 100.
U.S. Pat. No. 4,877,416, Campbell, Oct. 31, 1989, discloses a fuel composition comprising a major portion of hydrocarbons boiling in the gasoline range and (a) from about 0.001% by weight to about 1.0% by weight of a hydrocarbyl-substituted amine or polyamine having an average molecular weight of about 750 to about 10,000 and also having at least one basic nitrogen atoms, and(b) a hydrocarbyl-terminated poly(oxyalkylene) monool having an average molecular weight from about 500 to about 5,000 wherein said oxyalkylene group of the hydrocarbyl-terminated poly(oxyalkylene) monool is a C
2
to C
5
oxyalkylene group and the hydrocarbyl group of said hydrocarbyl-terminated poly(oxyalkylene) monool is a C
1
to C
30
hydrocarbyl group and wherein the weight percent of the hydrocarbyl-terminated poly(oxyalkylene)monool in the fuel composition ranges from about 0.01 to 100 times the amount of hydrocarbyl-substituted amine or polyamine.
SUMMARY OF THE INVENTION
The present invention relates to a composition comprising (A) at least one polyalkenene-substituted amine; and (B) at least one hydrocarbyl-terminated poly(oxypropylene) monool represented by the formula
wherein in formula (B-I), R is an alkyl or alkyl-substituted aromatic group of about 8 to about 20 carbon atoms; x is a number from about 13 to about 28; and wherein the weight ratio of component (A) to component (B) ranges from about 10:1 to about 1:10.
The composition is useful as a fuel additive for reducing intake valve deposits or for improving the valve stick performance of an internal combustion engine. The invention also relates to concentrates and fuel compositions containing the foregoing fuel additive composition and to a method for reducing intake valve deposits or for improving the valve stick performance of an internal combustion engine by fueling an engine with a fuel composition containing the foregoing fuel additive composition.
DETAILED DESCRIPTION OF THE INVENTION
As used herein, the term “hydrocarbyl substituent” or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character. Examples of hydrocarbyl groups include:
(1) hydrocarbon substituents, that is, aliphatic. (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions containing polyalkene-substituted amine and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions containing polyalkene-substituted amine and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions containing polyalkene-substituted amine and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2963775

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.