Chemistry: fertilizers – Processes and products – Organic material-containing
Reexamination Certificate
2000-08-11
2002-08-13
Sayala, Chhaya D. (Department: 1761)
Chemistry: fertilizers
Processes and products
Organic material-containing
C071S064100, C071S032000, C536S114000
Reexamination Certificate
active
06432155
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to stable, viscous compositions of phosphate and xanthan gum variants.
2. Discussion of the Related Art
Liquid fertilizers and animal feed compositions are products that contain inorganic and organic materials that are important nutrients for plants and animals, respectively. Often, these compositions are prepared in concentrated form, in which some of the inorganic and organic nutrient materials are insoluble, or only slightly soluble.
Generally, liquid fertilizers, which are also known as fluid fertilizers, contain particular ratios of nitrogen (N), phosphorous (P) and potassium (K) to supplement plant nutrients in the soil. One commonly available liquid fertilizer is referred to as 10-34-0 and is a solution comprising 10% nitrogen, 34% phosphorous and 0% potassium. The ratio of N, P and K in liquid fertilizers may vary widely. The phosphorous contained within most liquid fertilizers is of the polyphosphate type, which is composed of a series of orthophosphate molecules linked through the process of dehydration. Commercially available ammonium polyphosphates are usually a mixture of ortho- and polyphosphates.
In addition to liquid fertilizers, other conventional phosphate-containing compositions include, for example, liquid animal feed compositions, fire retardant coating materials, and the like. For example, liquid animal feed systems typically include 10-34-0, water and other ingredients, such as, for example, urea, molasses, salt, magnesium oxide, and the like. Phosphate-containing fire retardant coating materials, for example, often require enhanced viscosity or the suspension of additional ingredients, such as pigments, metal particles and the like.
Use of the highly concentrated formulations of these compositions is problematic when the poorly soluble nutrient materials or suspended ingredients settle out or precipitate from the composition. These solid materials may clog applicators or may be difficult to re-suspend in the fertilizer, fire retardant coating material or feed mixture. This may result in the target soil, plant or animal receiving less than the desired amount of the nutrient mixture and may result in uneven application of the fire retardant coating material.
Xanthan gum is a useful and versatile viscosifying agent. Xanthan gums are hydrophilic polysaccharides obtained through fermentation of appropriate nutrient media with microorganisms of the genus Xanthomonas. When dissolved in water in low concentration, xanthan gums impart a viscosity to an aqueous solution. The resulting viscosified solutions may be used in a wide variety of industrial applications, such as in the manufacture of food products (sauces, ice creams, etc.) and in oil field drilling fluids. Xanthan viscosified solutions are particularly useful in applications where it is desirable to suspend solid materials in the aqueous medium in a concentrated form. Aqueous solutions containing low concentrations of xanthan gum demonstrate excellent shear properties. Xanthan gum is also readily biodegradable and serves as soluble fiber when ingested by animals. As such, this material is particularly well suited for use as a suspending agent that functions to maintain the homogeneity of suspensions under a variety of temperatures, concentrations and pH conditions.
Unfortunately, conventional xanthan gum is not compatible with compositions containing high concentrations of phosphate materials, particularly ammonium polyphosphate, which are typically found in fertilizers, fire retardant coatings and animal feed compositions. Conventional xanthan gum precipitates, forms complexes, or does not offer sufficient suspension-ability in the presence of the high phosphate concentration generally present in liquid fertilizers, fire retardant coatings or animal feed compositions thereby forming non-homogeneous compositions that are difficult to pour, pump or otherwise administer. These compositions may lose their fluid properties and become difficult, if not impossible, to use.
One inexpensive alternative to xanthan gum that may be used as a viscosifying or suspending agent is clay. However, clay does not offer the same level of suspension-ability as xanthan gum. Moreover, clay-containing compositions may be difficult to administer, for example, in a spray applicator due to the propensity of clay to clog a nozzle.
Other more expensive viscosifying or suspending agents must be used in relatively higher concentrations to provide the viscosity and suspension-ability comparable to that provided by xanthan gum. Accordingly, it would be highly desirable to provide a fluid xanthan gum composition that would be useful for forming fluid compositions, and in particular, fluid compositions containing high concentrations of phosphate.
SUMMARY OF THE INVENTION
The present invention relates to stable, viscous compositions comprising phosphate, xanthan gum variants and water. A preferred embodiment of this invention is directed to a liquid fertilizer composition comprising a xanthan gum variant, phosphate, nitrogen and water. Another embodiment is directed to a liquid animal feed composition comprising a xanthan gum variant, phosphate, water, and at least one of minerals, vitamins, protein, fat, urea, molasses, salt and magnesium oxide. Yet another embodiment relates to a fire retardant composition comprising a xanthan gum variant, phosphate, water, and at least one of a coloring agent, corrosion inhibitor and a metal additive.
DETAILED DESCRIPTION OF THE INVENTION
The stable liquid fertilizer, fire retardant compositions and animal feed compositions of this invention are rheologically modified compositions that possess and retain a homogeneous texture and appearance, even on long term storage. The rheologically modified compositions of this invention possess these features when used in media, or in combination with other elements, having an acid, neutral or basic pH. The xanthan gum variants useful in this invention may be used to increase the viscosity of phosphate-containing solutions and are not limited to the type of phosphate contained within the solution. For example, xanthan gum variants may be used to increase viscosity of solutions containing phosphates, such as orthophosphate, polyphosphate, pyrophosphate, tripolyphosphate, trimetaphosphate, tetrametaphosphate and the like.
Xanthan gum is a heteropolysaccharide of high molecular weight, composed of D-glucose, D-mannose and D-glucuronate moieties in a molar ratio of 2:2:1, respectively. The term “conventional xanthan gum”, as used in the present context, includes native xanthan gum, which has been described in numerous publications and patents previously (see, for example, U.S. Pat. Nos. 3,020,206, 3,020,207, 3,391,060 and 4,154,654).
Non-pyruvylated, non-acetylated and non-pyruvylated-non-acetylated xanthan gum variants may be used as effective rheological modifiers in the liquid fertilizer, fire retardant coating materials and animal feed compositions of this invention. When dispersed in fluids, these xanthan gum variants form mixtures exhibiting high viscosity at low shear rates. The term “xanthan gum variants”, as used in the present context, includes non-pyruvylated, non-acetylated and non-pyruvylated-non-acetylated xanthan gums whether produced through fermentation of mutant strains of Xanthomonas or produced through chemical or enzymatic processes performed on conventional xanthan gum or any combination thereof. The term “phosphate”, as used in the present context, includes, but is not limited to orthophosphate, polyphosphate, pyrophosphate, tripolyphosphate, trimetapliosphate and tetrametaphosphate in any combination. The term “non-pyruvylated xanthan gum”, as used in the present context, includes a xanthan gum having a pyruvate content of about 0 to about 1.5%, preferably of about 0 to about 1.0%, and more preferably, of about 0 to about 0.5%. The term “non-acetylated xanthan gum”, as used in the present context, includes a xanthan gum having an acetate content of about 0 to about 1.5
Swazey John M.
Talashek Todd
Winston Phil
CP Kelco U.S. Inc.
Fitzpatrick ,Cella, Harper & Scinto
Sayala Chhaya D.
LandOfFree
Compositions containing phosphate and xanthan gum variants does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compositions containing phosphate and xanthan gum variants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions containing phosphate and xanthan gum variants will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2905912