Compositions and methods for the treatment and diagnosis of...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S008000, C536S022100, C536S023100

Reexamination Certificate

active

06455685

ABSTRACT:

1. INTRODUCTION
The present invention relates to methods and compositions for the treatment and diagnosis of immune disorders, especially T lymphocyte-related disorders, including, but not limited to, chronic inflammatory diseases and disorders, such as Crohn's disease, reactive arthritis, including Lyme disease, insulin-dependent diabetes, organ-specific autoimmunity, including multiple sclerosis, Hashimoto's thyroiditis and Grave's disease, contact dermatitis, psoriasis, graft rejection, graft versus host disease, sarcoidosis, atopic conditions, such as asthma and allergy, including allergic rhinitis, gastrointestinal allergies, including food allergies, eosinophilia, conjunctivitis, glomerular nephritis, certain pathogen susceptibilities such as helminthic (e.g., leishmaniasis) and certain viral infections, including HIV, and bacterial infections, including tuberculosis and lepromatous leprosy. For example, genes which are differentially expressed within and among T helper (TH) cells and TH cell subpopulations, which include, but are not limited to TH0, TH1 and TH2 cell subpopulations are identified. Genes are also identified via the ability of their gene products to interact with gene products involved in the differentiation, maintenance and effector function of such TH cells and TH cell subpopulations. The genes identified can be used diagnostically or as targets for therapeutic intervention. In this regard, the present invention provides methods for the identification and therapeutic use of compounds as treatments of immune disorders, especially TH cell subpopulation-related disorders. Additionally, methods are provided for the diagnostic evaluation and prognosis of TH cell subpopulation-related disorders, for the identification of subjects exhibiting a predisposition to such conditions, for monitoring patients undergoing clinical evaluation for the treatment of such disorders, and for monitoring the efficacy of compounds used in clinical trials.
2. BACKGROUND OF THE INVENTION
Two distinct types of T lymphocytes are recognized: CD8
+
cytotoxic T lymphocytes (CTLs) and CD4
+
helper T lymphocytes (TH cells). CTLs recognize and kill cells which display foreign antigens of their surfaces. CTL precursors display T cell receptors that recognize processed peptides derived from foreign proteins, in conjunction with class I MHC molecules, on other cell surfaces. This recognition process triggers the activation, maturation and proliferation of the precursor CTLs, resulting in CTL clones capable of destroying the cells exhibiting the antigens recognized as foreign.
TH cells are involved in both humoral and cell-mediated forms of effector immune responses. With respect to the humoral, or antibody, immune response, antibodies are produced by B lymphocytes through interactions with TH cells. Specifically, extracellular antigens are endocytosed by antigen-presenting cells (APCs), processed, and presented preferentially in association with class II major histocompatibility complex (MHC) molecules to CD4
+
class II MHC-restricted TH cells. These TH cells in turn activate B lymphocytes, resulting in antibody production.
The cell-mediated, or cellular, immune response, functions to neutralize microbes which inhabit intracellular locations. Foreign antigens, such as, for example, viral antigens, are synthesized within infected cells and presented on the surfaces of such cells in association with class I MHC molecules. This, then, leads to the stimulation of the CD8
+
class I MHC-restricted CTLs.
Some agents, such as mycobacteria, which cause tuberculosis and leprosy, are engulfed by macrophages and processed in vacuoles containing proteolytic enzymes and other toxic substances. While these macrophage components are capable of killing and digesting most microbes, agents such as mycobacteria survive and multiply. The agents' antigens are processed, though, by the macrophages and presented preferentially in association with class II MHC molecules to CD4
+
class II MHC-restricted TH cells, which become stimulated to secrete interferon-&ggr;, which, in turn, activates macrophages. Such activation results in the cells' exhibiting increased bacteriocidal ability.
TH cells are composed of at least two distinct subpopulations, termed TH1 and TH2 cell subpopulations. Evidence suggests that TH1 and TH2 subtypes represent extremely polarized populations of TH cells. While such subpopulations were originally discovered in murine systems (reviewed in Mosmann, T. R. and Coffman, R. L., 1989, Ann. Rev. Immunol. 7:145), the existence of TH1- and TH2-like subpopulations has also been established in humans (Del Prete, A. F. et al., 1991, J. Clin. Invest. 88:346; Wiernenga, E. A. et al., 1990, J. Imm. 144:4651; Yamamura, M. et al., 1991, Science 254:277; Robinson, D. et al., 1993, J. Allergy Clin. Imm. 92:313). While TH1-like and TH2-like cells can represent the most extremely polarized TH cell subpopulations, other TH cell subpopulations, such as TH0 cells (Firestein, G. S. et al., 1989, J. Imm. 143:518), which represent TH cells which have characteristics of TH1 and TH2 cell subpopulations.
TH1-like and TH2-like cells appear to function as part of the different effector functions of the immune system (Mosmann, T. R. and Coffmann, R. L., 1989, Ann. Rev. Imm. 7:145). Specifically, TH1-like cells direct the development of cell-mediated immunity, triggering phagocyte-mediated host defenses, and are associated with delayed hypersensitivity. Accordingly, infections with intracellular microbes tend to induce TH1-type responses. TH2 cells drive humoral immune responses, which are associated with, for example, defenses against certain helminthic parasites, and are involved in antibody and allergic responses.
It has been noted that the ability of the different TH cell types to drive different immune effector responses is due to the exclusive combinations of cytokines which are expressed within a particular TH cell subpopulation. For example, TH1 cells are known to secrete interleukin-2 (IL-2), interferon-&ggr; (IFN-&ggr;), and lymphotoxin, while TH2 cells secrete interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-10 (IL-10).
It is thought that TH1 and TH2 subpopulations arise from a common naive precursor (referred to as THP). For example, naive CD4
+
cells from mice which express a single transgenic T cell receptor can be induced to develop into either the TH1 or TH2 cell type. The conditions of antigen stimulation, including the nature and amount of antigen involved, the type of antigen-presenting cells, and the type of hormone and cytokine molecules present seem to all represent determinants of the pattern of TH1 versus TH2 differentiation, with, perhaps, the decisive role belonging to the cytokines present. With such a complex series of possible determinants, a full accounting of the exact factors important in driving TH1 or TH2 differentiation are, as yet largely unknown.
Further, it has recently been noted that, in addition to CD4
+
TH cells, CD8
+
CTLs can, under certain conditions, also exhibit TH1-like or TH2-like cytokine profiles (Seder, R. A. et al., 1995, J. Exp. Med. 181:5-7; Manetti, R. et al., 1994, J. Exp. Med. 180:2407-2411; Maggi, E. et al., 1994, J. Exp. Med. 180:489-495). While the precise functional role of such CD8
+
TH-like cells is currently unknown, these cell subpopulations appear to have great relevance to immune responses against infectious agents such as viruses and intracellular parasites.
Once TH1 and TH2 subpopulations are expanded, the cell types tend to negatively regulate one another through the actions of cytokines unique to each. For example, TH1-produced IFN-&ggr; negatively regulates TH2 cells, while TH2-produced IL-10 negatively regulates TH1 cells. Moreover, cytokines produced by TH1 and TH2 antagonize the effector functions of one another (Mosmann, T. R. and Moore, 1991, Immunol. Today 12:49).
Failure to control or resolve an infectious process often results from an inappropriate, rather

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions and methods for the treatment and diagnosis of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions and methods for the treatment and diagnosis of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and methods for the treatment and diagnosis of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2908492

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.