Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Primate cell – per se
Reexamination Certificate
2000-06-28
2003-03-11
Priebe, Scott D. (Department: 1632)
Chemistry: molecular biology and microbiology
Animal cell, per se ; composition thereof; process of...
Primate cell, per se
C435S326000, C424S184100, C424S185100
Reexamination Certificate
active
06531315
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to therapy and diagnosis of cancer, such as lung cancer. The invention is more specifically related to polypeptides comprising at least a portion of a lung tumor protein, and to polynucleotides encoding such polypeptides. Such polypeptides and polynucleotides may be used in vaccines and pharmaceutical compositions for prevention and treatment of lung cancer, and for the diagnosis and monitoring of such cancers.
BACKGROUND OF THE INVENTION
Lung cancer is the primary cause of cancer death among both men and women in the U.S., with an estimated 172,000 new cases being reported in 1994. The five-year survival rate among all lung cancer patients, regardless of the stage of disease at diagnosis, is only 13%. This contrasts with a five-year survival rate of 46% among cases detected while the disease is still localized. However, only 16% of lung cancers are discovered before the disease has spread.
Early detection is difficult since clinical symptoms are often not seen until the disease has reached an advanced stage. Currently, diagnosis is aided by the use of chest x-rays, analysis of the type of cells contained in sputum and fiberoptic examination of the bronchial passages. Treatment regimens are determined by the type and stage of the cancer, and include surgery, radiation therapy and/or chemotherapy. In spite of considerable research into therapies for the disease, lung cancer remains difficult to treat.
Accordingly, there remains a need in the art for improved vaccines, treatment methods and diagnostic techniques for lung cancer.
SUMMARY OF THE INVENTION
Briefly stated, the present invention provides compositions and methods for the diagnosis and therapy of cancer, such as lung cancer. In one aspect, the present invention provides polypeptides comprising at least a portion of a lung tumor protein, or a variant thereof. Certain portions and other variants are immunogenic, such that the ability of the variant to react with antigen-specific antisera is not substantially diminished. Within certain embodiments, the polypeptide comprises a sequence that is encoded by a polynucleotide sequence selected from the group consisting of: (a) sequences recited in any one of SEQ ID NO: 1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347 and 349; (b) variants of a sequence recited in any one of SEQ ID NO: 1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347 and 349; and (c) complements of a sequence of (a) or (b). In specific embodiments, the polypeptides of the present invention comprise at least a portion of a tumor protein that includes an amino acid sequence selected from the group consisting of sequences recited in any one of SEQ ID NO: 152, 155, 156, 165, 166, 169, 170, 172, 174, 176, 226-252, 338-344 and 346, and variants thereof.
The present invention further provides polynucleotides that encode a polypeptide as described above, or a portion thereof (such as a portion encoding at least 15 amino acid residues of a lung tumor protein), expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.
Within other aspects, the present invention provides pharmaceutical compositions comprising a polypeptide or polynucleotide as described above and a physiologically acceptable carrier.
Within a related aspect of the present invention, vaccines for prophylactic or therapeutic use are provided. Such vaccines comprise a polypeptide or polynucleotide as described above and an immunostimulant.
The present invention further provides pharmaceutical compositions that comprise: (a) an antibody or antigen-binding fragment thereof that specifically binds to a lung tumor protein; and (b) a physiologically acceptable carrier.
Within further aspects, the present invention provides pharmaceutical compositions comprising: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a pharmaceutically acceptable carrier or excipient. Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B cells.
Within related aspects, vaccines are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above, and (b) an immunostimulant.
The present invention further provides, in other aspects, fusion proteins that comprise at least one polypeptide as described above, as well as polynucleotides encoding such fusion proteins.
Within related aspects, pharmaceutical compositions comprising a fusion protein, or a polynucleotide encoding a fusion protein, in combination with a physiologically acceptable carrier are provided.
Vaccines are further provided, within other aspects, that comprise a fusion protein, or a polynucleotide encoding a fusion protein, in combination with an immunostimulant.
Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient a pharmaceutical composition or vaccine as recited above.
The present invention further provides, within other aspects, methods for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a lung tumor protein, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.
Within related aspects, methods are provided for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated as described above.
Methods are further provided, within other aspects, for stimulating and/or expanding T cells specific for a lung tumor protein, comprising contacting T cells with one or more of: (i) a polypeptide as described above; (ii) a polynucleotide encoding such a polypeptide; and/or (iii) an antigen presenting cell that expresses such a polypeptide; under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells. Determined T cell populations comprising T cells prepared as described above are also provided.
Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population as described above.
The present invention further provides methods for inhibiting the development of a cancer in a patient, comprising the steps of: (a) incubating CD4
+
and/or CD8
+
T cells determined from a patient with one or more of: (i) a polypeptide comprising at least an immunogenic portion of a lung tumor protein; (ii) a polynucleotide encoding such a polypeptide; and (iii) an antigen-presenting cell that expressed such a polypeptide; and (b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient. Proliferated cells may, but need not, be cloned prior to administration to the patient.
Within further aspects, the present invention provides methods for determining the presence or absence of a cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and (c) comparing the amount of polypeptide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Withi
Bangur Chaitanya S.
Fan Liqun
Fanger Gary R.
Hosken Nancy A.
Kalos Michael D.
Chen Shin-Lin
Corixa Corporation
Priebe Scott D.
Seed Intellectual Property Law Group PLLC
LandOfFree
Compositions and methods for the therapy and diagnosis of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compositions and methods for the therapy and diagnosis of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and methods for the therapy and diagnosis of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3085064