Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert
Reexamination Certificate
2000-03-08
2003-03-25
Page, Thurman K. (Department: 1615)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Implant or insert
C424S430000, C424S431000, C424S432000, C424S433000, C424S434000, C514S944000, C514S945000, C514S953000, C514S967000, C530S388210, C436S008000
Reexamination Certificate
active
06537566
ABSTRACT:
FIELD OF THE INVENTION
The present invention is in the field of bio-effecting compositions and methods. More specifically, the present invention relates to compositions and methods of using the compositions to inhibit the growth of uterine fibroid cells.
BACKGROUND OF THE INVENTION
Uterine Fibroids
Uterine fibroids (leiomyomata) are “benign” tumors of the uterus, which occur in about 20 percent of women of reproductive age. Uterine fibroids are one of the most common tumors. Complications arising from uterine fibroids account for about 30% of all hysterectomies performed in the U.S., with a resulting direct cost of inpatient care of about $1 billion per year. Despite this enormous impact on women's health, the factors causing formation and growth of these benign tumors remain largely enigmatic.
A uterine fibroid (leiomyomata) consists of a mass or population of smooth muscle cells and connective tissue that grows, usually slowly, within the uterine wall. Epidemiologic studies demonstrate that fibroids initially form after menarche. It is suspected that fibroid growth is due to a monoclonal, deregulated proliferation of uterine smooth muscle myometrial cells. The primary tumor cell type resulting from the growth of the fibroid are derived from myometrial cells and are referred to herein as leiomyoma cells. Uterine fibroid leiomyoma cells tend to proliferate during pregnancy and regress in menopause. Studies have clearly implicated gonadal steroids (estrogen and progesterone) as a likely factor in formation and growth of these benign tumors. This has motivated the search for therapies aiming at suppressing endogenous gonadal steroid production.
Treatment of Fibroids
Chemical intervention has focused on a class of compounds which previously had shown efficacy at reducing the circulating concentration of steroids and reducing myoma volume. These compounds are the Gonadotropin Releasing Hormone (GnRH) agonists: GnRHa. Other factors which have been implicated in stimulation of fibroid growth include Insulin-like Growth Factor-1 (IGF-1), Insulin, Growth Hormone, Epidermal Growth Factor (EGF), Transforming Growth Factor (TGF), and Basic Fibroblast Growth Factor (bFGF). However, chronic therapy with GnRHa has not gained widespread acceptance for the following reasons:
1. GnRHa is an expensive medication which generally must be given by injection.
2. The maximal effect of GnRH agonist is seen at 12 weeks, after which no further volume reduction is seen.
3. Although the median uterine volume reduction seen is about 50%, individual fibroids can vary greatly in response.
4. Rapid increases in both uterine and fibroid size are seen after discontinuation of therapy.
5. Chronic hypoestrogenemia, resulting from GnRH agonist use, causes osteoporosis, increased risk of heart disease, hot flashes, vaginal dryness, and mood swings. Some of these symptoms can be ameliorated by addition of daily low dose estrogen and progestin, which may compromise efficacy in some individuals and increases cost and complexity of therapy.
6. Present chemical interventions are administered systemically.
Surgical intervention in the treatment of fibroids can range from myomectomy to total hysterectomy, where the fallopian tubes and uterus are completely removed. As with all such surgeries, these treatments are extremely invasive. In addition to the risks generally associated with surgical interventions, infertility can result. However, in spite of the disadvantages of surgical intervention, the frequency of its use in the treatment of fibroids is indicative of the limitations of chemical intervention in relieving or controlling the condition in women.
Therefore, it would be beneficial to have a therapeutic option for the treatment of fibroids that is not invasive, as is surgery, and does not have the side effects of systemically administered hormonal therapies.
SUMMARY OF THE INVENTION
The present invention is the combination of compositions and methods for treating uterine fibroids by inhibiting the growth of uterine fibroid leiomyoma cells. The present invention uses non-hormonal compositions, and non-invasive or minimally-invasive delivery methods to non-systemically administer the compositions. The inhibition of cell growth involves the blocking of cell division and/or DNA replication in the target cells in order to retard the rate of increase of the cell population, to stabilize the cell population, or to reduce the number of cells in the cell population.
Myometrial cells are smooth muscle cells of the uterus. Leiomyoma cells are derived from myometrial cells, and are the tumor cell type which substantially comprise the population of cells of a uterine fibroid. A cell population, for the purpose of this invention includes a uterine fibroid or a collection or concentration of leiomyoma cells, which cells are the target of the present invention. The compositions of the present invention are formulations of an active agent, plus any carrier and formulary materials to which a subject's tissue is initially exposed. An agent is a substrate that is a fibroid cell growth inhibitor. A carrier is a substance that facilitates the agent's interaction with a transport or communication mechanism that moves substrates into the milieu of the fibroid cells. A dose is an amount of composition containing a sufficient concentration of agent to inhibit or reduce proliferation after transport into the milieu of the target cells. A communication or transport means is a mechanism by which the agent is moved from the point of the subject's exposure to the composition into the milieu of the target cells. A vehicle is the physical packaging of the composition as administered to a subject to be treated. A delivery or release device is a “hardware” type of delivery vehicle.
The delivery vehicle of the present invention is any means for containing a composition comprising an agent useful for inhibiting uterine fibroid cell growth, and releasing it to enter into a communication or transport means. A transport means preferably is a natural mechanism for communicating agent substrate from the delivery vehicle into the milieu of the target cell population. Such communication means includes chemical means such as diffusion, gradient transport, etc., and biological means such as closed or preferential type circulatory means (e.g., the uterine first pass effect).
Generally, the methods of treatment of the present invention comprises: giving a dose of composition that incorporates a fibroid cell growth inhibitor (FGI) agent to a subject to be treated for uterine fibroids. The dose is delivered non-systemically by placing it as proximate as possible to the uterine fibroid cells to be inhibited.
The FGI agent in the composition of the dose is a substrate that is normally present and physiologically well tolerated in humans or an analog or derivative of such a substrate. The dose of composition contains a sufficient amount of the FGI agent such that, upon transport of the agent into the milieu of the uterine fibroid cells, the delivered amount is effective to inhibit the growth of said cells. After delivery of the dose of the composition proximate the fibroid cells, the fibroid cells are exposed to the FGI to the agent to inhibit their growth. Examples of fibroid cell growth inhibitor (FGI) agents are substrates that are a protein kinase C pathway inhibiting compound; a direct protein kinase C inhibitor; an &agr;-tocopherol, its derivatives or analogue; and a MAP kinase inhibitor. Certain thiazolidinediones have been demonstrated to effect PKC mediated pathway, in view of which makes them identified potential FGI agents. The determination of any specific identified potential FGI agent as an actual FGI agent may be accomplished according to Example 1, below.
Identified FGI agents potentially useful in the practice of the present invention include: &agr;- and &bgr;-tocopherols, &agr;-tocopherol succinates, thiazolidinediones (e.g., troglitazone), bisindolemalemides, (e.g., GF109203x), U73122, and PD98059. Additionally, appropriate FGI
Copland John Alton
Young Steven L.
Channavajjala Lakshmi
Page Thurman K.
Pernia Shernan D.
LandOfFree
Compositions and methods for the non-invasive treatment of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compositions and methods for the non-invasive treatment of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and methods for the non-invasive treatment of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3040476