Compositions and methods for sealing formations

Boring or penetrating the earth – Processes – Boring with specific fluid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106SDIG001, C166S283000, C166S292000, C166S294000, C507S202000, C507S212000, C507S213000, C507S269000, C507S925000

Reexamination Certificate

active

06739414

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
FIELD OF THE INVENTION
The present invention generally relates to compositions of matter and methods of using those compositions. More particularly, some of the embodiments of the present invention relate to compositions and methods of use for fluids useful in various downhole operations. Still more particularly and as part of one of the preferred embodiments, the present invention relates to compositions and methods of use of fluids useful as downhole pills for sealing formation fractures and/or inhibiting downhole fluid loss.
BACKGROUND OF THE INVENTION
A significant problem associated with downhole drilling (e.g., drilling wells for hydrocarbons production) is the loss of downhole circulation fluid (sometimes referred to as “bulk fluid”) into the formation. This phenomenon is commonly called lost circulation. Lost circulation may occur when the differential pressure of the hydrostatic column is greater than formation pressure.
The need has increased to drill across zones that are not only low pressure, but highly fractured or permeable. The exposure of numerous fractures or openings having low formation pressures has increased the problem of lost circulation and formation invasion. The openings in the formation are able to accept and store drilling fluid so that little to none is returned to the surface for recirculation. This loss of fluid can become an expensive and dangerous problem. Lost circulation can lead to hole instability, stuck drill pipe, and loss of well control. At the least, it can halt drilling operations and requires expensive replacement of the lost fluid.
In addition to the fluid volume being lost, expensive lost circulation materials (LCM) are required in order to prevent continuous loss. LCM materials have heretofore comprised fibrous, granular, or flake materials such as cane fibers, wood fibers, cottonseed hulls, nut hulls, mica, cellophane, and many other materials. These LCM materials are added to the fluid system so that they may be carried into the loss zone and lodge in and around the formation. These LCM materials are typically added to the zone in the form of a pill. Pills are well known in the art and are typically small amounts of fluid relative to the bulk circulating fluid, i.e., fluid circulating within the drillstring and annulus. Pills are spotted or circulated in a wellbore and are prepared for a variety of functions including enhancement of the properties of the bulk fluid, performance of a specific task that the bulk fluid cannot perform, or a combination thereof.
LCM materials described above have several problems. They can be damaging to the formation zones. Also, solids (drill cuttings and the like) present in the LCM fluids cannot be removed with any of the known or available equipment, i.e., shaker screens, cyclones, etc., at least not in an economical manner. Thus, the fluids generally have to bypass the solids removal mechanisms. Further, the current LCM materials do not plug rapidly in many instances and have to be circulated numerous times through a fractured zone. This results in continuous increase of solids buildup and ultimately a fluid system containing a high concentration of solids.
Another type of lost circulation control technique has been developed in part due to the problems mentioned above and in part due to the increase in underbalanced drilling. Some of the underbalanced drilling techniques include the use of air, mist, and foam drilling fluids. Methods of correcting lost circulation of drilling fluids by aerating the drilling fluids are set forth in U.S. Pat. No. 2,818,230 (Davis) and U.S. Pat. No. 4,155,410 (Jackson). Problems with these fluids include hole cleaning, control of formation fluids, corrosion, and requirements for expensive, often hard to get equipment such as compressors and boosters.
In addition, although some LCM fluids are suitable for plugging the formation fractures and preventing the loss of circulation fluid, in severe loss zones even these fluids have difficulty sealing or plugging the fractures before a significant amount of expensive fluid is lost into the formation. These severe loss zones are typically large fractures in terms of physical opening size and/or in terms of total volume of the fracture. For example, large fractures are considered 10 &mgr;m or greater at their smallest opening. Many fractures are several inches or greater and some are sometimes associated with small caves typically called vugs. Even when the smallest opening is near the 10 &mgr;m level, the overall fracture may be several inches to several feet tall and several feet to several miles in length. Thus, many of the current LCM drilling fluid compositions may not be able to seal the fracture fast enough to prevent excessive loss.
In light of the deficiencies of the prior LCM materials, there is still a great need for fluids that can rapidly seal formation fractures and/or inhibit the excessive loss of drilling fluids.
SUMMARY OF THE INVENTION
In accordance with the spirit of the present invention, novel fluids comprising particulate or particulate like matter are prepared as LCM compositions that assist in the effective sealing of the formation, including large fractures. The novel LCM compositions preferably work in connection with a bulk fluid system that contains sealants, such as aphrons or particulate bridging agents. Aphron fluid systems are described in U.S. Pat. Nos. 5,881,826, 6,123,159, 6,148,917 and 6,156,708 and PCT WO 98/36151, all of which are hereby incorporated by reference. The novel compositions contribute to the creation of a tortuous bed within a formation fracture by assisting in the deliquification of the fluid within the formation fracture and effectively depositing a larger proportion of solid material from the LCM composition into the formation fracture. The tortuous bed allows the aphrons and/or other sealing materials from the bulk circulating fluid or secondary fluid to be more effective in sealing the fractures.
Several embodiments are disclosed as being illustrative of the spirit of the invention. For example, in several preferred embodiments, the fluid composition comprises hollow particles, aggregate material or mixtures thereof in concentrations high enough to viscosify the fluid. In a preferred embodiment, these fluid compositions further comprise an additive, such as a viscosifier or dilatant agent, designed to increase the fluids sealing capabilities or to enhance the qualities of the fluid or both. In addition, another preferred embodiment comprises LCM pill compositions that have increased concentrations of bulk bridging material, particularly aphrons.
Also provided herein are methods of using the above mentioned embodiments. For example, LCM pills or a series of pills are preferably spotted in the desired fracture zones. The LCM pills are delivered to the fracture zones and allowed to sit for a specified period of time. The pill fluid enters the formation fractures, deliquifys and forms a tortuous bed. As pressure is reapplied, i.e., the column is circulated through the drillstring and annulus, the remaining pill fluid is returned to the surface for separation and may be incorporated into the bulk drilling or servicing fluid.
These and other embodiments of the present invention, as well as their features and advantages will become apparent with reference to the following detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
Not applicable.


REFERENCES:
patent: 2811488 (1957-10-01), Nestle
patent: 2818230 (1957-12-01), Davis
patent: 2944018 (1960-07-01), Borcherdt
patent: 3193011 (1965-07-01), Rickard
patent: 3198252 (1965-08-01), Walker et al.
patent: 3219111 (1965-11-01), Armentrout
patent: 3347316 (1967-10-01), Havenaar
patent: 3415318 (1968-12-01), Meijs
patent: 3448800 (1969-06-01), Parker et al.
patent: 3690106 (1972-09-01), Tregembo et al.
patent: 3700050 (1972-10-01), Miles
patent: 3902911 (1975-09-01), Messenger
patent: 4010231

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions and methods for sealing formations does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions and methods for sealing formations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and methods for sealing formations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3236106

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.